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The Facility Layout
(or  Floorplanning) Problem

• Find the optimal positions for a given set of  N 
rectangular departments of fixed area within a 
rectangular facility of fixed area.

• All the dimensions may be given or left 
undetermined.

• The objective is to minimize (according to some 
norm, e.g. l1, l2) the distances between pairs of 
departments that have a nonzero connection 
“cost” .



Applications ?

• Hospital layout

• Service center layout

• VLSI placement and design

• etc.

Like many optimization problems from 
practical applications, the facility layout 
problem is “hard”  (NP-hard).

But :



Small Example
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Facility is fixed to be a 12 x 13 rectangle



Possible Layout for  Example

Total Euclidean cost: 229.71



Motivation for  this Work

�We present a new two-stage framework based on 
mathematical programming models, and inspired by 
a convex global relaxation of the layout problem.

�Exact mixed integer programming approaches only
work for problems with less than 10 departments.

�Most other approaches in the literature are based on 
heuristic search methods.



Outline of the Proposed New 
Framework

� The first model is a convex relaxation of the 
layout problem (to find a good starting point);

� The second model is an exact formulation of the 
problem as a mathematical program with 
equilibrium constraints (MPEC).

�Both models can be solved efficiently using 
widely available non-linear optimization software.



The NLT method

(van Camp, Car ter  &  Vannelli, 1991)



The (non-convex) vCCV model
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NLT: Three-Stage Approach

(1) Evenly distribute the centres of the departments 
inside the facility;

(2) Reduce the overlap between departments;
(3) Determine the final solution by solving the 

vCCV model.

Stages 1 and 2 are (non-convex) relaxations of the
vCCV model which approximate the departments
by circles.



The Stage-2 model of NLT
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and      is the radius of the circle for department i.



ModCoAR:
The First Model of

the New Framework



Steps to der ive the ModCoAR model

(1) Define the target distance concept for circles 
with varying radii;

(2) Enforce the target distances using a repeller
term in the objective function;

(3) Analyse and convexify the result

� Concept of generalized target distances;

(4) Add a barrier term (for ease of computation).

For convenience, we work with the squares of the distances:
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Target distances concept

Hence the target distance between circles i and j is

.0somefor)(: 2 >+⋅= αα jiij rrt



Attractor -Repeller Paradigm

For each pair i,j of modules, the distance

minimizing term is viewed as an attractor:

is minimized when 

0,0, ≥≥⋅ ijijijij DcDc
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Enforcing the target distances

To counter this “attraction” , we enforce the

target distances with repeller terms in the

objective function:

and where      is the target distance.
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The (non-convex) AR model
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Examine the objective function

Rewrite the objective function:

and since the sum of convex functions is convex,
we ask:
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Fact: Let 

where

Then the following statements hold for g:
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Define a new (convex!) function

For and

we define the convex, continuously

differentiablepiecewise function
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Graph of  fij
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The convex CoAR model
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When is the value of fij minimum?

• We deduce from the structure of fij that its

minimum value is attained for all positions of

the departments i and j for which

• This includes Dij=0 (complete overlap!).
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Since we want to minimize overlap, what we

really want is a layout for which 

For such a point, we have

Dij proportional to tij ;

hence our original target distances are still

enforced.
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Generalized Target Distances
If we define

then we can think of Tij as a

generalized target distance

for the departments i and j.

This “new”  target distance takes both tij and cij into

account.
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Practical Interpretation of Tij

• If cij is small, then departments i and j are 
likely to be placed far apart in the layout, so 
the corresponding Tij can be large;

• If cij is large, then the opposite reasoning 
applies, and Tij can be small;

• But Tij also takes tij into account!
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How to achieve        ?ijT

Add to the objective function a term of the form

for each pair of departments.

The resulting function has minima that satisfy
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A Glimpse of the 4D Function…





The ModCoAR model
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BPL :
The Second Model of
the New Framework



Non-over lap constraints
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New var iables

For each pair of departments, introduce two
new variables

and let
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Equilibr ium Constraints
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MPEC Formulation
(Math. Prog. With Equilibr ium Constraints)
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plus: “ fit-in-the-facility”  constraints and bound constraints
(all linear)
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Computational Results



Solution methodology

• We solve both models using the software 
package MINOS.

• For ModCoAR, because of the linearity of 
the constraints, convergence is generally 
superlinear.



Solution methodology (ctd)

• We chose to set

so that K clearly dominates the cij’ s.

• MINOS requires an initial configuration to 
start the (iterative) algorithm for solving 
ModCoAR.
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Choice of initial configuration



Solving the MPEC using MINOS

• The complementarity constraints

imply that no strictly feasible point exists.

This causes MINOS to fail…

• Thus we apply a penalty-type approach to 
the above constraints.
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BPL Model
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(all linear)



Aspect ratio constraints

• The aspect-ratio for department i is defined 
as

• Bounding (above) the aspect ratio ensures 
that no departments are excessively narrow 
in the layout.
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Aspect ratio constraints (ctd)

• We enforce the bound       on       by adding 
to BPL the constraints
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Classical example :
Armour  &  Buffa problem (1963)
• Large problem (20 departments) – beyond all 

previous mathematical programming approaches 
(mixed integer programming).

• Each run of our algorithm requires approximately 
18 seconds of CPU time (300 MHz SunSPARC).

• We can compare our framework using the 
rectilinear norm with the most recent results in the 
literature (Tate & Smith’95 -- genetic algorithm).



Exper iments with the
Armour  &  Buffa problem (1)

First we set no aspect ratio constraints, only a lower 
bound of 2 on all heights and widths.

We found a layout with cost 4230.6

and aspect ratio 6.67

In TS’95, the best layout with aspect ratio bounded 
by 7 has cost 5255.0



Exper iments with the
Armour  &  Buffa problem (2)

Then we started setting aspect ratio constraints:

5224.76171.12

5140.15832.63

4786.45743.14

4591.35524.75

New 
framework

TS’95*
iβ



Best layout with 4≤iβ

532.1=α

Optimal solution of ModCOAR



Best layout with          (ctd)

Total cost 4786.4 (versus 5743.1 in TS’95)

4≤iβ



On-going and Future Research

• Apply this framework to the MCNC macro-cell 
layout problems, and compare the results with 
other methods.

• Investigate more thoroughly the role of α in the 
model.

• Improve the solution methodology; in particular, 
apply a nonlinear programming solver that directly 
tackles the MPEC formulation in spite of the lack 
of a strictly feasible point.
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