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The Facility Layout

(or Floor planning) Problem

« Find the optimal positions for agiven set of N
rectangular departments of fixed area within a
rectangular facility of fixed area.

» All the dimensions may be given or left
undetermined.

* The objectiveisto minimize (according to some
norm, e.g. |4, I,) the distances between pairs of
departments that have a nonzero connection

11 Cogﬂ ]




Applications ?

e Hospital layout

» Service center layout

e VLSI placement and design
* gfC.

But : Like many optimization problems from
practical applications, the facility layout
problem is“hard” (NP-hard).
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Total Euclidean cost: 229.71




M otivation for thisWork

»Exact mixed integer programming approaches only
work for problems with less than 10 departments.

*Most other approachesin the literature are based on
heuristic search methods.

=»\Ne present a new two-stage framework based on
mathematical programming models, and inspired by
a convex global relaxation of the layout problem.




Outline of the Proposed New
Framework

v The first model is a convex relaxation of the
layout problem (to find a good starting point);

v The second model is an exact formulation of the
problem as a mathematical program with
equilibrium constraints (M PEC).

=» Both models can be solved efficiently using
widely available non-linear optimization software.







The (non-convex) vCCV model
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X =X |=3(w +w)20 if |y -y [-3(h+h)<0, Di# ],
Vi -y, |-3(h+h)20 if |x-x [-3(w+w)<0, Oi# ],
;%WF—()g +iw)=0 Oi, ih —(y,+ih)=0 0O,
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where|,min, [.max | _min gnd | .M gre given bounds on the dimensions.




NLT: Three-Stage Approach

(1) Evenly distribute the centres of the departments
Inside the facility;

(2) Reduce the overlap between departments;

(3) Determine the final solution by solving the
vCCV model.

Stages 1 and 2 are (non-convex) relaxations of the
vCCV model which approximate the departments
by circles.




The Stage-2 model of NLT

min c. d.
(%, ¥:).he Wi Z i

1<i<j<N

subjectto  d; =r; +r,

Oi # j
W 2 X+, 2w 21 —x i
she2y +r, . Zho2r -y 0
|7 > min(wg,h.) =1,

where d; = \/(>q —X,-)2+(yi _yj)2

and 1, istheradius of the circle for department i.




ModCoAR:
The First Model of
the New Framework




Stepsto derive the ModCoAR model

(1) Define the target distance concept for circles
with varying radii;
(2) Enforcethe target distancesusing arepeller
term in the objective function;
(3) Analyse and convexify the result
=» Concept of generalized target distances,

(4) Addabarrier term (for ease of computation).

For convenience, we work with the squares of the distances:

D, = dij2 = (% _Xj)2 +(Y; - yj)2




Target distances concept

ri+ ].'j

Hence the target distance between circlesi and j is
t,:=alr +r,)* forsomea >0.




Attractor-Repeller Paradigm

For each pair 1,] of modules, the distance
minimizing term is viewed as an attractor:

c. LD, ¢, 20, D;=20

Isminimized when D, =0.




Enforcing thetarget distances

To counter this “attraction”, we enforce the
target distances with repeller termsin the
objective function:

f(2) ::l—l, z>0
Z

D. _ .
and z= t—” where t; Isthetarget distance.
]
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The (non-convex) AR model
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Examine the objective function

Rewrite the objective function:
Y 6D + ¥ g1 = ¥ gD +it
I<i<j<N I<i<j<N ij I<i<j<N ij

and since the sum of convex functionsis convex,
we ask:

. t.
When istheterm c, b, +—--1 convex?

ij




Fact: Let t
g:0* - 0O, 90% %1 Yy, ¥,) = €2+~ —1,
where

t >0and z>0, Z:(Xl—XZ)Z + (Y, - yz)z-
Then the following statements hold for g:

1. If z=2 \/%thentheHan of gis
positive semidefinite.

2. If Z=\/%then the gradient of g is zero.




Define a new (convex!) function

t

For ¢; >0, t;

we define the convex, continuously

differentiabl e piecewise function

fi (X X, Vi Y;) =5

>0, and D; = (X _Xj)2+(yi _yj')21




Graph of fij




T he convex CoAR modd

min f . (X,X,V,Y.
(X,¥:), he,we Js;_;N i (%0 X, ¥, Y5)

subjectto Zw. =2x +r, LiOM
zhe 2y +r, OiOM
W 2r—-%x Ui0OM
zho2r -y LiOM




When isthe value of fj; minimum?

« We deduce from the structure of f; that its
minimum value is attained for all positions of
the departmentsi and j for which

« Thisincludes D;j=0 (complete overlap!).
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Since we want to minimize overlap, what we
really want is alayout for which

- /tij
DIJ -~ Cij .

For such a point, we have

Dj; proportional to tj; ;
hence our original target distances are still
enforced.




Generalized Target Distances

If we define
t..
» — 1 " "
Ti- YTy >0 small
then we can think of Tj; asa
generalized target distance

for the departmentsi and .

This“new” target distance takes both tjj and cjj into
account.




Practical I nterpretation of Tj;

+&

Tij = Cij
e If ¢j issmall, then departmentsi and | are
likely to be placed far apart in the layout, so

the corresponding T;; can be large;

* If ¢j Islarge, then the opposite reasoning
applies, and T;; can be small;

« But Tj; also takest;; into account!




How to achieve T; ?

Add to the objective function aterm of the form

D,
- KlIn -2
T

]
for each pair of departments.

The resulting function has minimathat satisfy

D, =T,




A Glimpse of the 4D Function...
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Objective function value

Fammatar h [ & h=0.005)
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The ModCoAR model

1<i<j<N

subjectto  tw.2x +r, Sho=y +r L
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Non-overlap constraints

X =X [~3(w+w)=0 if |y -y |[-4(h+h)<0

Yo=Y [=3(h+h)20 if % =x|-3(w +w,)<0

Note that these constraints are disjunctive...




... and therefore can be written as

1(w +wj)—‘>q =X ‘SO or 3(h +hj)—‘ Y, — Y, ‘SO
which is equivalent to

min { 3w +w)=|x =x [, 3(h +h) -]y -y, [} < 0




New variables

For each pair of departments, introduce two
new variables

Xij Y
and let
X =2 3(W +Wj)—‘)(|—XJ X; =20
Yiz3(h+h) [y -y | . ¥ =0




Equilibrium Constraints
Then

min{ 4w +w) =[x =x;[.4(h +h) =] y -y, <0

IS equivalent to




MPEC Formulation
(Math. Prog. With Equilibrium Constraints)

min > G G
(4., )y WD Wi I<i<j<N

st Xy ziw+w)=|x-x| , Y, 2zi(h+h)-|y -y
X;Y; =0, X;z0 , Y;=20 , Ol<i<j<N
hw =a [0Oi (areaconstraints)

plus: “fit-in-the-facility” constraints and bound constraints
(dl linear)

and O; (X, X;,Y;,Y,) isthedesired norm (1, 1,, ...).

j ’







Solution methodology

» \We solve both models using the software
package MINOS.

* For ModCoAR, because of the linearity of
the constraints, convergence is generally
superlinear.




Solution methodology (ctd)

e We chose to set
K= 2.
1<i<j<N
so that K clearly dominates the ¢jj’s.

 MINOS requires an initial configuration to
start the (iterative) algorithm for solving
ModCoAR.




Choice of initial configuration
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Solving the MPEC using MINOS
* The complementarity constraints
Xi; ;=0 , X;20 , Y;20

Imply that no strictly feasible point exists.
This causes MINOS to falil...

* Thuswe apply a penalty-type approach to
the above constraints.




BPL Model

min > G0, +
(%,Y),h,w,he,we 1<i<j<N

StXp 23w +w) =[x -x | L Y23 +h) [y -y
X;20 , Y;20 , Ol<i<]<N
hw =g [
plus. “fit-in-the-facility” constraints and bound constraints
(@l linear)




Aspect ratio constraints

* The aspect-ratio for department i is defined
as

_ max{h,w}
" min{h,w}

» Bounding (above) the aspect ratio ensures
that no departments are excessively narrow
In the layout.




Aspect ratio constraints (ctd)

» \We enforce the bound ,Bi* on S by adding
to BPL the constraints

Bwzh, Bhzw, B 24




Classical example:
Armour & Buffa problem (1963)

 Large problem (20 departments) — beyond all
previous mathematical programming approaches
(mixed integer programming).

« Each run of our algorithm requires approximately
18 seconds of CPU time (300 MHz SUnSPARC).

* \We can compare our framework using the
rectilinear norm with the most recent results in the
literature (Tate & Smith’ 95 -- genetic algorithm).




Experimentswith the
Armour & Buffa problem (1)

First we set no aspect ratio constraints, only alower
bound of 2 on all heights and widths.

We found alayout with cost 4230.6
and aspect ratio 6.67

In TS 95, the best layout with aspect ratio bounded
by 7 has cost 5255.0




Experimentswith the
Armour & Buffa problem (2)

Then we started setting aspect ratio constraints:

/Bi* TS 95 New
framework
5 5524.7 4591.3
4 5743.1 4786.4
3 5832.6 5140.1
2 6171.1 5224.7




Best layout with £ <4

a =1.532
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Best layout with £ <4 (ctd)
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Total cost 4786.4 (versus 5743.1in TS 95)




On-going and Future Resear ch

» Apply thisframework to the MCNC macro-cell
layout problems, and compare the results with
other methods.

 Investigate more thoroughly the role of o in the
model.

* Improve the solution methodology; in particular,
apply a nonlinear programming solver that directly
tackles the MPEC formulation in spite of the lack
of agtrictly feasible point.
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