A New Mathematical Programming Framework for Facility Layout

Miguel F. Anjos

Electrical & Computer Engineering, U. of Waterloo

(joint work with Anthony Vannelli)

Fields Institute for the Mathematical Sciences 9 May 2002

The Facility Layout (or Floorplanning) Problem

- Find the optimal positions for a given set of *N* rectangular departments of *fixed area* within a rectangular facility of *fixed area*.
- All the dimensions may be given <u>or</u> left undetermined.
- The objective is to minimize (according to some norm, e.g. l₁, l₂) the distances between pairs of departments that have a nonzero connection "cost".

Applications?

- Hospital layout
- Service center layout
- VLSI placement and design
- etc.

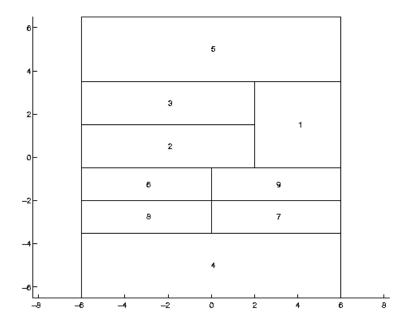
But: Like many optimization problems from practical applications, the facility layout problem is "hard" (NP-hard).

Small Example

Dept	Area		
1	16		
2	16		
3	16		
4	36		
5	36		
6	9		
7	9		
8	9		
9	9		

i	j	C_{ij}	i	j	C_{ij}	i	j	C_{ij}
1	4	5	2	9	1	4	7	4
1	5	5	3	4	2	5	6	3
1	9	1	3	5	2	5	9	4
2	4	3	3	9	1	6	9	2
2	5	3	4	6	4	7	9	1

Facility is fixed to be a 12 x 13 rectangle



Total Euclidean cost: 229.71

Motivation for this Work

- ■Exact mixed integer programming approaches only work for problems with less than 10 departments.
- •Most other approaches in the literature are based on heuristic search methods.
- → We present a new two-stage framework based on mathematical programming models, and inspired by a *convex global relaxation* of the layout problem.

Outline of the Proposed New Framework

- ✓ The first model is a convex relaxation of the layout problem (to find a good starting point);
- ✓ The second model is an *exact formulation* of the problem as a mathematical program with equilibrium constraints (MPEC).
- → Both models can be *solved efficiently* using widely available non-linear optimization software.

The NLT method (van Camp, Carter & Vannelli, 1991)

The (non-convex) vCCV model

$$\min_{(x_{i},y_{i}),h_{i},w_{i},h_{F},w_{F}} \sum_{1 \leq i < j \leq N} c_{ij} \sqrt{(x_{i}-x_{j})^{2}+(y_{i}-y_{j})^{2}}$$

$$s.t. \begin{cases}
\left|x_{i}-x_{j}\right| - \frac{1}{2}(w_{i}+w_{j}) \geq 0 & \text{if } \left|y_{i}-y_{j}\right| - \frac{1}{2}(h_{i}+h_{j}) < 0, \forall i \neq j, \\
\left|y_{i}-y_{j}\right| - \frac{1}{2}(h_{i}+h_{j}) \geq 0 & \text{if } \left|x_{i}-x_{j}\right| - \frac{1}{2}(w_{i}+w_{j}) < 0, \forall i \neq j, \\
\left(\frac{1}{2}w_{F}-(x_{i}+\frac{1}{2}w_{i}) \geq 0 & \forall i, \quad \frac{1}{2}h_{F}-(y_{i}+\frac{1}{2}h_{i}) \geq 0 & \forall i, \\
\left(x_{i}-\frac{1}{2}w_{i}\right) + \frac{1}{2}w_{F} \geq 0 & \forall i, \quad (y_{i}-\frac{1}{2}h_{i}) + \frac{1}{2}h_{F} \geq 0 & \forall i, \\
\left(\min(w_{i},h_{i}) - l_{i}^{\min} \geq 0 & \forall i, \quad l_{i}^{\max} - \min(w_{i},h_{i}) \geq 0 & \forall i, \\
\min(w_{F},h_{F}) - l_{F}^{\min} \geq 0, \quad l_{F}^{\max} - \min(w_{F},h_{F}) \geq 0, \\
h_{i}w_{i} = a_{i} & \forall i
\end{cases}$$

where l_i^{\min} , l_i^{\max} , l_F^{\min} and l_F^{\max} are given bounds on the dimensions.

NLT: Three-Stage Approach

- (1) Evenly distribute the centres of the departments inside the facility;
- (2) Reduce the overlap between departments;
- (3) Determine the final solution by solving the vCCV model.

Stages 1 and 2 are (non-convex) relaxations of the vCCV model which approximate the departments by circles.

The Stage-2 model of NLT

$$\begin{aligned} & \min_{(x_i,y_i),h_F,w_F} & \sum_{1 \leq i < j \leq N} c_{ij} \, d_{ij} \\ & \text{subject to} & d_{ij} \geq r_i + r_j \quad \forall i \neq j \\ & \frac{1}{2} w_F \geq x_i + r_i \quad , \ \frac{1}{2} w_F \geq r_i - x_i \quad \forall i \\ & \frac{1}{2} h_F \geq y_i + r_i \quad , \ \frac{1}{2} h_F \geq r_i - y_i \quad \forall i \\ & l_F^{\max} \geq \min(w_F,h_F) \geq l_F^{\min} \, , \end{aligned}$$
 where
$$d_{ij} \coloneqq \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$
 and r_i is the radius of the circle for department i .

ModCoAR: The First Model of the New Framework

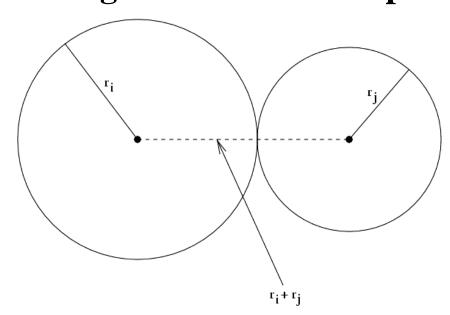
Steps to derive the ModCoAR model

- (1) Define the *target distance* concept for circles with varying radii;
- (2) Enforce the target distances using a *repeller* term in the objective function;
- (3) Analyse and *convexify* the result
 - **→** Concept of *generalized target distances*;
- (4) Add a *barrier term* (for ease of computation).

For convenience, we work with the squares of the distances:

$$D_{ij} := d_{ij}^2 = (x_i - x_j)^2 + (y_i - y_j)^2$$

Target distances concept



Hence the target distance between circles i and j is $t_{ij} := \alpha \cdot (r_i + r_j)^2$ for some $\alpha > 0$.

Attractor-Repeller Paradigm

For each pair *i,j* of modules, the distance minimizing term is viewed as an attractor:

$$c_{ij} \cdot D_{ij}, \qquad c_{ij} \ge 0, \quad D_{ij} \ge 0$$

is minimized when $D_{ij} = 0$.

Enforcing the target distances

To counter this "attraction", we enforce the target distances with repeller terms in the objective function:

$$f(z) := \frac{1}{z} - 1, \quad z > 0$$

 $f(z) \coloneqq \frac{1}{z} - 1, \quad z > 0$ and $z = \frac{D_{ij}}{t_{ij}}$, where t_{ij} is the target distance.

The (non-convex) AR model

$$\min_{(x_{i}, y_{i}), h_{F}, w_{F}} \sum_{1 \leq i < j \leq N} c_{ij} D_{ij} + \left(\sum_{1 \leq i < j \leq N} f\left(\frac{D_{ij}}{t_{ij}}\right)\right)$$
subject to
$$d_{ij} \geq r_{i} + r_{j} \quad \forall i \neq j$$

$$\frac{1}{2} w_{F} \geq x_{i} + r_{i} \quad \forall i$$

$$\frac{1}{2} h_{F} \geq y_{i} + r_{i} \quad \forall i$$

$$\frac{1}{2} w_{F} \geq r_{i} - x_{i} \quad \forall i$$

$$\frac{1}{2} h_{F} \geq r_{i} - y_{i} \quad \forall i$$

$$l_{F}^{\max} \geq \min(w_{F}, h_{F}) \geq l_{F}^{\min} \quad w_{F}^{\max} \geq v_{F}^{\max}$$

$$w_F^{\max} \ge w_F \ge w_F^{\min}$$
 $h_F^{\max} \ge h_F \ge h_F^{\min}$

Examine the objective function

Rewrite the objective function:

$$\sum_{1 \leq i < j \leq N} \ c_{ij} \ D_{ij} \quad + \quad \sum_{1 \leq i < j \leq N} \left(\frac{t_{ij}}{D_{ij}} - 1 \right) \ = \quad \sum_{1 \leq i < j \leq N} \left(c_{ij} D_{ij} + \frac{t_{ij}}{D_{ij}} - 1 \right)$$

and since the sum of convex functions is convex, we ask:

When is the term $c_{ij}D_{ij} + \frac{t_{ij}}{D_{ij}} - 1$ convex?

Fact: Let

$$g: \Re^4 \to \Re$$
, $g(x_1, x_2, y_1, y_2) = cz + \frac{t}{z} - 1$,

where

$$(c>0)$$
 t > 0 and $z>0$, $z=(x_1-x_2)^2+(y_1-y_2)^2$.

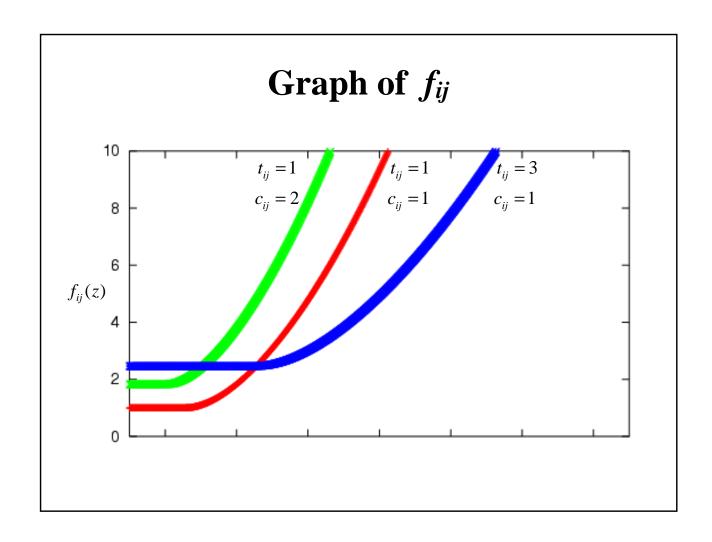
Then the following statements hold for g:

- 1. If $z \ge \sqrt{\frac{t}{c}}$ then the Hessian of g is positive semidefinite.
- 2. If $z = \sqrt{\frac{t}{c}}$ then the gradient of g is zero.

Define a new (convex!) function

For $c_{ij} > 0$, $t_{ij} > 0$, and $D_{ij} = (x_i - x_j)^2 + (y_i - y_j)^2$, we define the <u>convex</u>, <u>continuously</u> <u>differentiable piecewise</u> function

$$f_{ij}(x_i, x_j, y_i, y_j) := \begin{cases} c_{ij} D_{ij} + \frac{t_{ij}}{D_{ij}} - 1, & D_{ij} \ge \sqrt{\frac{t_{ij}}{c_{ij}}} \\ 2\sqrt{c_{ij} t_{ij}} - 1, & 0 \le D_{ij} < \sqrt{\frac{t_{ij}}{c_{ij}}} \end{cases}$$



The convex CoAR model

$$\min_{(x_{i}, y_{i}), h_{F}, w_{F}} \sum_{1 \leq i < j \leq N} f_{ij}(x_{i}, x_{j}, y_{i}, y_{j})$$

$$subject to \quad \frac{1}{2}w_{F} \geq x_{i} + r_{i} \quad \forall i \in M$$

$$\frac{1}{2}h_{F} \geq y_{i} + r_{i} \quad \forall i \in M$$

$$\frac{1}{2}w_{F} \geq r_{i} - x_{i} \quad \forall i \in M$$

$$\frac{1}{2}h_{F} \geq r_{i} - y_{i} \quad \forall i \in M$$

$$w_{F}^{\max} \geq w_{F} \geq w_{F}^{\min}$$

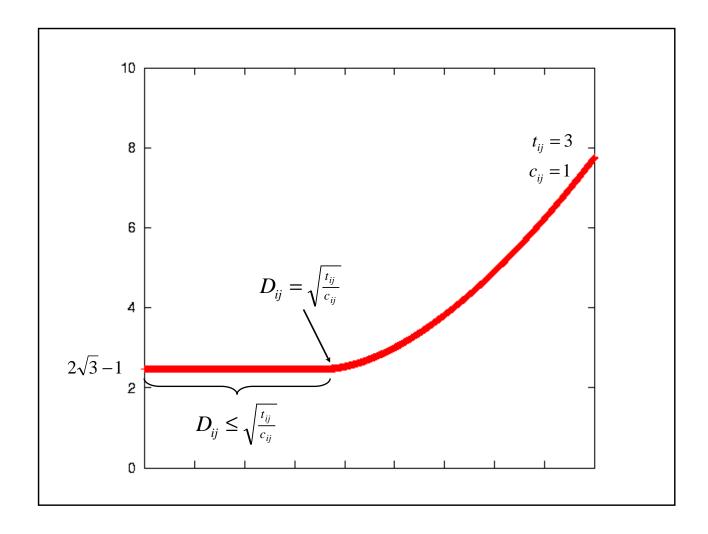
$$h_{F}^{\max} \geq h_{F} \geq h_{F}^{\min}$$

When is the value of f_{ij} minimum?

• We deduce from the structure of f_{ij} that its minimum value is attained for all positions of the departments i and j for which

$$D_{ij} \leq \sqrt{\frac{t_{ij}}{c_{ij}}}$$
.

• This includes $D_{ij}=0$ (complete overlap!).



Since we want to minimize overlap, what we really want is a layout for which

$$D_{ij} pprox \sqrt{rac{t_{ij}}{c_{ij}}}$$
.

For such a point, we have

 D_{ij} proportional to t_{ij} ;

hence our original target distances are still enforced.

Generalized Target Distances

If we define

$$T_{ij} \coloneqq \sqrt{rac{t_{ij}}{c_{ij} + arepsilon}}, \quad arepsilon > 0 \quad \text{"small"}$$

then we can think of T_{ij} as a

generalized target distance

for the departments i and j.

This "new" target distance takes both t_{ij} and c_{ij} into account.

Practical Interpretation of T_{ij}

$$T_{ij}\coloneqq\sqrt{rac{t_{ij}}{c_{ij}+arepsilon}}$$

- If c_{ij} is small, then departments i and j are likely to be placed far apart in the layout, so the corresponding T_{ij} can be large;
- If c_{ij} is large, then the opposite reasoning applies, and T_{ij} can be small;
- But T_{ij} also takes t_{ij} into account!

How to achieve T_{ij} ?

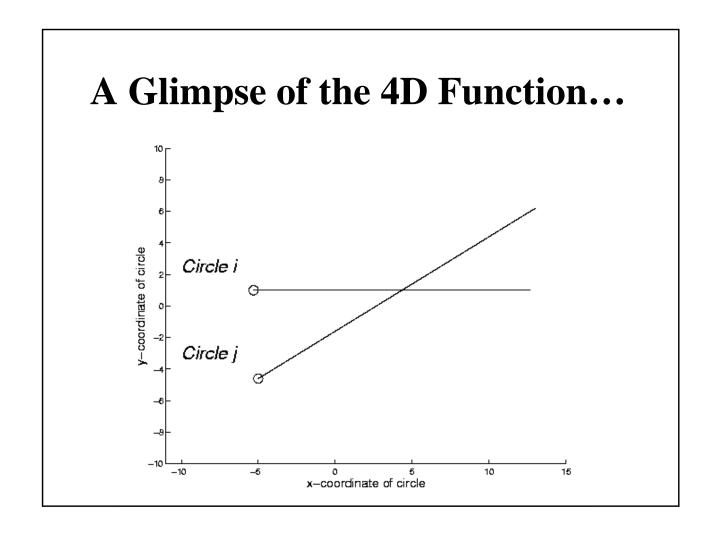
Add to the objective function a term of the form

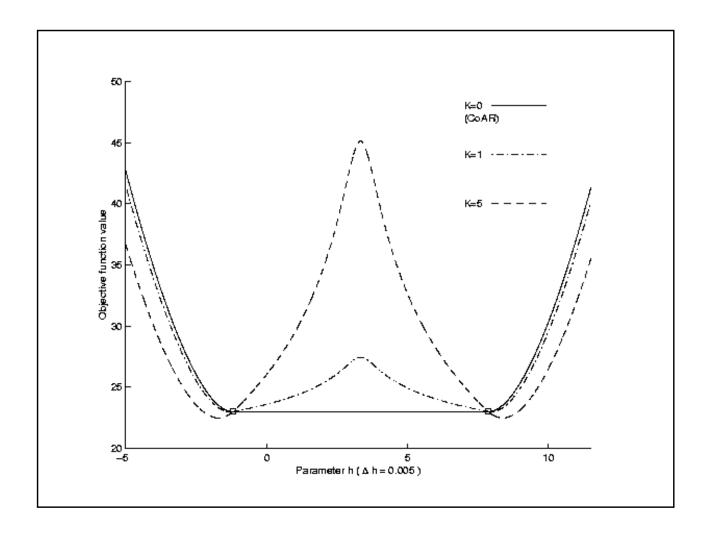
$$- K \ln \left(\frac{D_{ij}}{T_{ij}} \right)$$

for each pair of departments.

The resulting function has minima that satisfy

$$D_{ij} \approx T_{ij}$$





The ModCoAR model

$$\min_{\substack{(x_{i}, y_{i}), h_{F}, w_{F} \\ }} \sum_{1 \leq i < j \leq N} F_{ij}(x_{i}, x_{j}, y_{i}, y_{j}) - K \ln(D_{ij} / T_{ij})$$

$$subject \ to \quad \frac{1}{2} w_{F} \geq x_{i} + r_{i}, \quad \frac{1}{2} h_{F} \geq y_{i} + r_{i} \quad \forall i$$

$$\frac{1}{2} w_{F} \geq r_{i} - x_{i}, \quad \frac{1}{2} h_{F} \geq r_{i} - y_{i} \quad \forall i$$

$$w_{F}^{\max} \geq w_{F} \geq w_{F}^{\min}, \quad h_{F}^{\max} \geq h_{F} \geq h_{F}^{\min}$$

where

$$F_{ij}(x_i, x_j, y_i, y_j) := \begin{cases} c_{ij} D_{ij} + \frac{t_{ij}}{D_{ij}} - 1, & D_{ij} \ge T_{ij} \\ 2\sqrt{c_{ij} t_{ij}} - 1, & 0 \le D_{ij} < T_{ij} \end{cases}$$

BPL: The Second Model of the New Framework

Non-overlap constraints

$$|x_i - x_j| - \frac{1}{2}(w_i + w_j) \ge 0$$
 if $|y_i - y_j| - \frac{1}{2}(h_i + h_j) < 0$

$$|y_i - y_j| - \frac{1}{2}(h_i + h_j) \ge 0$$
 if $|x_i - x_j| - \frac{1}{2}(w_i + w_j) < 0$

Note that these constraints are disjunctive...

... and therefore can be written as

$$\frac{1}{2}(w_i + w_j) - |x_i - x_j| \le 0$$
 or $\frac{1}{2}(h_i + h_j) - |y_i - y_j| \le 0$

which is equivalent to

$$\min \left\{ \frac{1}{2} (w_i + w_j) - \left| x_i - x_j \right|, \frac{1}{2} (h_i + h_j) - \left| y_i - y_j \right| \right\} \le 0$$

New variables

For each pair of departments, introduce two new variables

$$X_{ij}$$
, Y_{ij}

and let

$$X_{ij} \ge \frac{1}{2} (w_i + w_j) - \left| x_i - x_j \right| , \quad X_{ij} \ge 0$$

$$Y_{ij} \ge \frac{1}{2} (h_i + h_j) - \left| y_i - y_j \right| , \quad Y_{ij} \ge 0$$

Equilibrium Constraints

Then

$$\min \left\{ \frac{1}{2} (w_i + w_j) - \left| x_i - x_j \right|, \frac{1}{2} (h_i + h_j) - \left| y_i - y_j \right| \right\} \le 0$$

is equivalent to

$$X_{ij} Y_{ij} = 0$$

MPEC Formulation

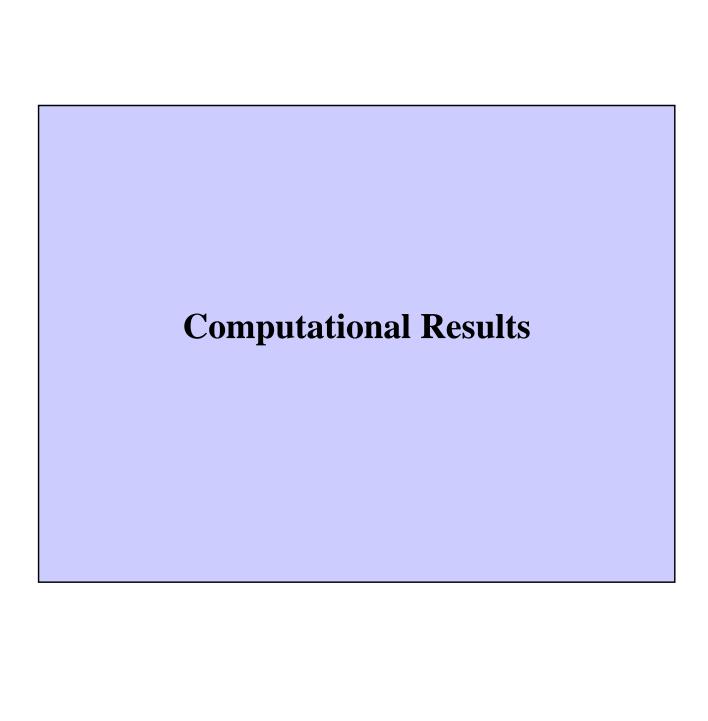
(Math. Prog. With Equilibrium Constraints)

$$\min_{\substack{(x_i, y_i), h_i, w_i, h_F, w_F}} \sum_{1 \leq i < j \leq N} c_{ij} \, \delta_{ij}$$

s. t.
$$X_{ij} \ge \frac{1}{2} (w_i + w_j) - |x_i - x_j|$$
, $Y_{ij} \ge \frac{1}{2} (h_i + h_j) - |y_i - y_j|$
 $X_{ij} Y_{ij} = 0$, $X_{ij} \ge 0$, $Y_{ij} \ge 0$, $\forall 1 \le i < j \le N$
 $h_i w_i = a_i$ $\forall i$ (area constraints)

plus: "fit-in-the-facility" constraints and bound constraints (all linear)

and $\delta_{ij}(x_i, x_j, y_i, y_j)$ is the desired norm $(l_1, l_2, ...)$.



Solution methodology

- We solve both models using the software package MINOS.
- For ModCoAR, because of the linearity of the constraints, convergence is generally *superlinear*.

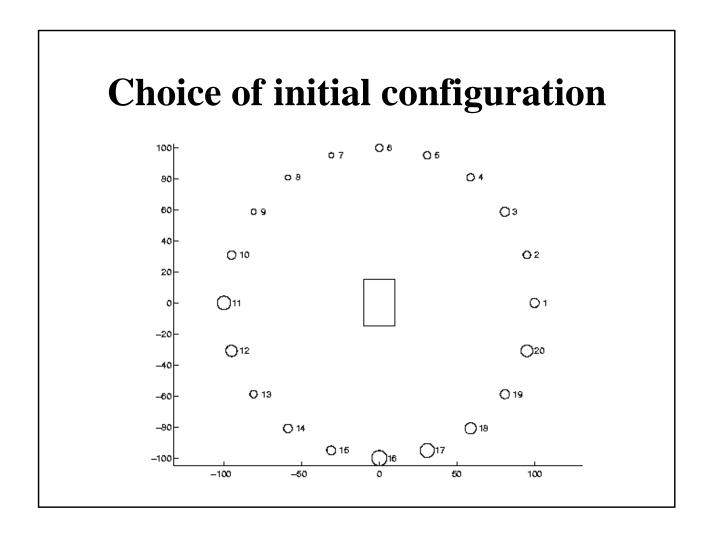
Solution methodology (ctd)

• We chose to set

$$K = \sum_{1 \leq i < j \leq N} c_{ij}$$

so that K clearly dominates the c_{ij} 's.

• MINOS requires an initial configuration to start the (iterative) algorithm for solving ModCoAR.



Solving the MPEC using MINOS

• The complementarity constraints

$$X_{ij} Y_{ij} = 0$$
 , $X_{ij} \ge 0$, $Y_{ij} \ge 0$

imply that **no** strictly feasible point exists. This causes MINOS to fail...

• Thus we apply a penalty-type approach to the above constraints.

BPL Model

$$\min_{(X_i, y_i), h_i, w_i, h_F, w_F} \sum_{1 \leq i < j \leq N} c_{ij} \delta_{ij} + \underbrace{K \cdot X_{ij} Y_{ij}}$$

s. t.
$$X_{ij} \ge \frac{1}{2}(w_i + w_j) - |x_i - x_j|$$
, $Y_{ij} \ge \frac{1}{2}(h_i + h_j) - |y_i - y_j|$
 $X_{ij} \ge 0$, $Y_{ij} \ge 0$, $\forall 1 \le i < j \le N$
 $h_i w_i = a_i \quad \forall i$

plus: "fit-in-the-facility" constraints and bound constraints (all linear)

Aspect ratio constraints

• The aspect-ratio for department *i* is defined as

$$\beta_i \coloneqq \frac{\max\{h_i, w_i\}}{\min\{h_i, w_i\}}$$

• Bounding (above) the aspect ratio ensures that no departments are excessively narrow in the layout.

Aspect ratio constraints (ctd)

• We enforce the bound β_i^* on β_i by adding to BPL the constraints

$$\beta_i \ w_i \ge h_i \ , \quad \beta_i \ h_i \ge w_i \ , \quad \beta_i^* \ge \beta_i \ .$$

Classical example: Armour & Buffa problem (1963)

- Large problem (20 departments) beyond all previous mathematical programming approaches (mixed integer programming).
- Each run of our algorithm requires approximately 18 seconds of CPU time (300 MHz SunSPARC).
- We can compare our framework using the rectilinear norm with the most recent results in the literature (Tate & Smith'95 -- genetic algorithm).

Experiments with the Armour & Buffa problem (1)

First we set no aspect ratio constraints, only a lower bound of 2 on all heights and widths.

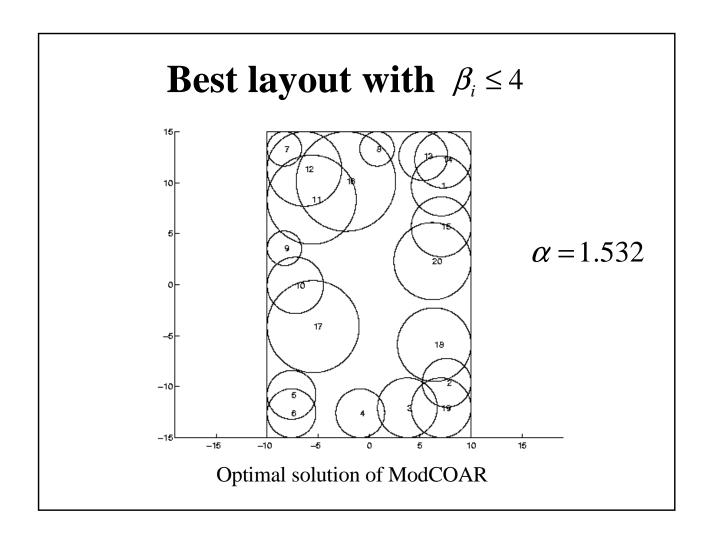
We found a layout with cost 4230.6 and aspect ratio 6.67

In TS'95, the best layout with aspect ratio bounded by 7 has cost 5255.0

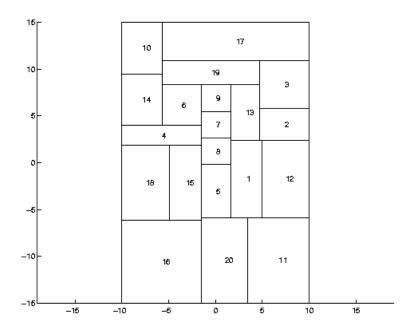
Experiments with the Armour & Buffa problem (2)

Then we started setting aspect ratio constraints:

$oldsymbol{eta}^*$	TS'95	New
P_i		framework
5	5524.7	4591.3
4	5743.1	4786.4
3	5832.6	5140.1
2	6171.1	5224.7



Best layout with $\beta_i \le 4$ (ctd)



Total cost 4786.4 (versus 5743.1 in TS'95)

On-going and Future Research

- Apply this framework to the MCNC macro-cell layout problems, and compare the results with other methods.
- Investigate more thoroughly the role of α in the model.
- Improve the solution methodology; in particular, apply a nonlinear programming solver that directly tackles the MPEC formulation in spite of the lack of a strictly feasible point.

References

- M.F.A. "New Convex Relaxations for the Maximum Cut and VLSI Layout Problems". Ph.D. Thesis, University of Waterloo, 2001. Available at http://etd.uwaterloo.ca/etd/manjos2001.pdf
- M.F.A. and A. Vannelli. "<u>An Attractor-Repeller Approach to Floorplanning</u>". To appear in Math. Meth. Oper. Res., 2002.
- M.F.A. and A. Vannelli. "<u>A New Mathematical Programming Framework for Facility Layout Design</u>", March 2002.

Papers available (until publication) at http://www.optimization-online.org