How Does Nature Compute?

Lila Kari
Dept. of Computer Science
University of Western Ontario
London, ON, Canada

http://www.csd.uwo.ca/~lila/lila@csd.uwo.ca

Computers: What can they accomplish?

- Fly spaceships to Mars
- Control aircraft
- Robot aided manufacturing
- Computer games
- Expedite journal submissions
- Email

Computers: What do they actually do?

- Computers = a collection of switches (bits) that are on (1) or off (0).
- Can execute only simple operations
 - § Flipping a bit's value
 - § Zeroing a bit
 - § Testing a bit

How do they do it?

Harel, D. Computers Ltd. 2000

Lila Kari, University of Western Ontario

Formal Models of Computing: Turing Machines

- Data
 - String of symbols written on a tape

- Operations
 - § Read a square
 - S Overwrite the symbol with another
 - § Move left or right

Turing Machine

Computation = Finite list of instructions

"If you are in state S and read input symbol X then write Y and move Left/Right"

TO RUN: enter a sequence of A's and B's, position read head on leftmost symbol, and start.

	State	Significance
Start	0	Has not yet seen a.B
	1	Has seen at least one B

Turing Machine

- Turing machines are capable of universal computation (everything that can be computed can be computed by a TM)
- The abstract notion of computation (Turing machine, algorithm, program) is hardware independent

- Abacus
- Pascal
- Jacquard
- Babbage
- Hollerith
- ENIAC
- Chip

Abacus

- Abacus
- Pascal
- Jacquard
- Babbage
- Hollerith
- ENIAC
- Chip

Mechanical adding machine (1642)

Lila Kari, University of Western Ontario

- Abacus
- Pascal
- Jacquard
- Babbage
- Hollerith
- ENIAC
- Chip

Jacquard's punch card loom (1801)

Abacus

Babbage's difference engine (1833)

- Pascal
- Jacquard
- Babbage
- Hollerith
- ENIAC
- Chip

- Abacus
- Pascal
- Jacquard
- Babbage
- Hollerith
- ENIAC
- Chip

Hollerith punch card system (1890)

ENIAC (1939-45) -167 sq.m.

- Abacus 18,000 vacuum tubes
- Pascal not programmable
- Jacquard
- Babbage
- Hollerith
- ENIAC
- Chip

- Abacus
- Pascal
- Jacquard
- Babbage
- Hollerith
- ENIAC
- Chip

Modern computer chip

Transistors

Integrated circuit

Lila Kari, University of Western Ontario

Lila Kari, University of Western Ontario

DNA Computer

- Input / Output (DNA)
 - S Data encoded using the DNA alphabet {A, C, G, T} and synthesized as DNA strands
- Bio-operations
 - § Cut
 - § Paste
 - **S** Copy
 - § Anneal
 - § Recombination

Lila Kari, University of Western Ontario

Biomolecular (DNA) Computing

- Hamiltonian Path Problem [Adleman, Science, 1994]
- DNA-based addition [Guarnieri et al, Science, 1996]
- Maximal Clique Problem [Ouyang et al, Science, 1997]
- DNA computing by self-assembly [Winfree et al, Nature 1998]
- Computations by circular insertions, deletions [Daley et al,1999]
- DNA computing on surfaces [Liu et al, Nature, 2000]
- Molecular computation by DNA hairpin formation

[Sakamoto et al, Science, 2000]

- Programmable and autonomous computing machines made of biomolecules [Benenson et al, Nature, 2001]
- 20-variable Satisfiability [Braich et al., Science 2002]

How Does Nature Compute?

- Technical difficulties encountered in experimental DNA computations (errordetection, error-correction) are routinely solved by biological systems in nature
- Idea: study and utilize the computational abilities of unicellular organisms

Ciliates: Unicellular Protozoa

Photo courtesy of L.F. Landweber

Lila Kari, University of Western Ontario

Ciliates: Genetic Info Exchange

Photo courtesy of L.F. Landweber

Lila Kari, University of Western Ontario

Ciliates: Gene Rearrangement

Photo courtesy of L.F. Landweber

Lila Kari, University of Western Ontario

Ciliates: Bio-operations

Ciliates: Results

- Guided Recombination System = A formal computational model based on contextual circular insertions and deletions
- Such systems have the computational power of Turing Machines (Landweber, Kari, '99)
- The model is consistent with the limited knowledge of this biological process

Essential Feature of Biocomputing: Self-Assembly

- Use knowledge of how simple components
 (DNA molecules, enzymes) interact
- Design a setup such that the computation happens essentially by itself
- Useful in nano-technology where components are too small for existing tools

Model of Self-Assembly

- Tile
 - § A 1 x 1 square
 - § Each side is "painted" with a certain kind of glue
 - § Tiles cannot be rotated
 - S Two "adjacent" tiles will "stick" only if they have matching glues at the touching edges
- Tile system
 - S T = A finite number of tile types (as above)
 - § Unlimited supply of each tile type available

(Classic) Tiling Problem

• Can any square, of any size, be tiled using only the available tile types, without violating the glue-matching rule?

No

Self-Assembly Problems

- What is the minimal number of tile types that can self-assemble into a given shape and nothing else?
- What is the optimal initial concentration of tile types that ensures fastest self-assembly?
- What happens if "bonds" have different strengths?

The Ribbon Problem

- Given a tile system, can we determine whether or not it can produce shapes that grow indefinitely?
- Can we decide whether or not a set of given tiles can produce unlimited-size ribbons?

Generating Ribbons

Answer

- There is no algorithm, and there never will be, for solving the Ribbon Problem!

 [Adleman, Kari, Kari, Reishus, 2002]
- You can devise a program that might work quite well, on some of the inputs. But there always will be inputs upon which your algorithm will misbehave; it will either run forever, or produce the wrong output.

Computable vs. Uncomputable!

- An algorithmic problem that admits no solution is termed uncomputable
- If it is a Yes/No problem, it is termed undecidable
- The Ribbon Problem is undecidable

Sometimes we cannot do it!

The uncomputable (undecidable)

The computable (decidable)

Harel, D. Computers Ltd. 2000

Lila Kari, University of Western Ontario

Experimental Self-Assembly

- Self-assembly using capillary forces (Rothemund)
- DNA computing by self-assembly (Winfree, Seeman)

Lila Kari, University of Western Ontario

Experimental Self-Assembly

- Self-assembly using capillary forces (Rothemund)
- DNA computing by self-assembly (Winfree, Seeman)

Experimental Self-Assembly

- Self-assembly using capillary forces (Rothemund)
- DNA computing by self-assembly (Winfree, Seeman)

Lila Kari, University of Western Ontario

a b DNA computing by self-assembly (Winfree, Seeman, Mao, LaBean, Reif) d

Lila Kari, University of Western Ontario

Potential Advantages of Biomolecular (DNA) Computing

Information density

1 gram of DNA (1 cm³ when dry) = 1 trillion CDs 1 lb DNA – more memory then all computers together.

Speed

Thousand to million times faster than an electronic computer due to massive parallelism

Energy consumption

thousand times more energy efficient

IMPACT OF DNA COMPUTING

- Sheds new light into the nature of computation
- Opens prospects of radically different computers
- Could lend new insights into the information processing abilities of cells
- "Biology and Computer Science life and computation are related" (Adleman)

"If we knew what it was that we were doing, it wouldn't be called research, would it?" (Einstein)