Sparsity and smoothness via the Fused Lasso

with applications to protein mass spec and microarray studies

Robert Tibshirani

Stanford Univ

Joint work with Michael Saunders, Saharon Rosset, Ji Zhu

http://www-stat.stanford.edu/ \sim tibs

Outline

- Review lasso and least angle regression
- Introduce fused lasso, with application to protein mass spectroscopy and gene expression data

General comments

Applied genomics needs:

- New statistical methodology
- Careful application of existing methodologyeg design of experiments, cross-validation
- Well-designed, free software with an easy-to-use interface.
 - #1 criterion for choosing between statistical methods: availability in a convenient package.

An example

Cross-validation, the wrong and right way.

Consider a simple classifier for microarrays:

- 1. Starting with all genes (say 5000), find the 200 genes having the largest correlation with the class labels
- 2. Carry about nearest-centroid classification using only these 200 genes

How do we estimate the test set performance of this classifier?

- Wrong: Apply cross-validation in step 2.
- Right: Apply cross-validation to steps 1 and 2.

It is easy to simulate realistic data with the class labels independent of the outcome, — so that true test error =50%— but "Wrong" CV error estimate is zero!

I have seen this error made in 4 high profile papers in the couple of years. See Ambroise and McLachlan PNAS 2002 for a nice discussion of this point.

MicroArray Example

- Expression data for 38 Leukemia patients ("Golub" data).
- X matrix with 38 samples and 7129 variables (genes)
- Response y is dichotomous ALL (27) vs AML (11)
- Idea: fit a linear model $y_i = \beta_0 + \sum_i x_{ij}\beta_j$, and use this to predict class label y_i .
- Have also a separate test set of 34 patients

Linear regression via the Lasso (Tibshirani, 1995

- Data consists of N observations data on p predictors $x_1, x_2, \ldots x_p$ and an outcome measurement y. Trying to predict y from $x_1, x_2, \ldots x_p$.
- Assume $\bar{y} = 0$, $\bar{x}_j = 0$, $Var(x_j) = 1$ for all j.
- Minimize $\sum_{i} (y_i \sum_{j} x_{ij}\beta_j)^2$ subject to $\sum_{j} |\beta_j| \leq s$
- With orthogonal predictors, solutions are soft thresholded version of least squares coefficients:

$$\operatorname{sign}(\hat{\beta}_j)(|\hat{\beta}_j| - \gamma)_+$$

 $(\gamma \text{ is a function of } s)$

- For small values of the bound s, Lasso does variable selection. See pictures.
- Ridge regression- closely related to the lasso, uses a penalty $\sum_{j} \beta_{j}^{2} \leq s$

Lasso and Ridge regression

More on Lasso

- Current implementations use quadratic programming to compute solutions
- Can be applied when p > n. In that case,
 number of non-zero coefficients is at most n
 (by convex duality)
- interesting consequences for applications, eg microarray data

Least Angle Regression — LAR

Like a "more democratic" version of forward stepwise regression.

- 1. Start with $r = y, \, \hat{\beta}_1, \hat{\beta}_2, \dots \hat{\beta}_p = 0$. Assume x_j standardized.
- 2. Find predictor x_j most correlated with r.
- 3. Increase β_j in the direction of $\operatorname{sign}(\operatorname{corr}(r,x_j))$ until some other competitor x_k has as much correlation with current residual as does x_j .
- 4. Move $(\hat{\beta}_j, \hat{\beta}_k)$ in the joint least squares direction for (x_j, x_k) until some other competitor x_ℓ has as much correlation with the current residual
- 5. Continue in this way until all predictors have been entered. Stop when $corr(r, x_j) = 0 \,\forall j$, i.e. OLS solution.

The LAR direction \mathbf{u}_2 at step 2 makes an equal angle with \mathbf{x}_1 and \mathbf{x}_2 .

LAR gives the lasso path

• Start with LAR. If a coefficient crosses zero, stop. Drop that predictor, recompute the best direction and continue. This gives the Lasso path

Software for R and Splus

lars() function fits all three models: lasso, lar or forward.stagewise. Methods for prediction, plotting, and cross-validation. Detailed documentation provided. Visit

www-stat.stanford.edu/ \sim hastie/Papers/#LARS

Main computations involve least squares fitting using the *active set* of variables. Computations managed by updating the Choleski R matrix (and frequent downdating for lasso and forward stagewise).

The fused lasso

- Note that when p > N, at most N lasso coefficients can be non-zero. Doesn't seem reasonable- too sparse!
- If there are many correlated features, Lasso gives only one of them a non-zero coefficient
- Maybe correlated featured should have similar coefficients

Protein mass spectroscopy

Blood serum samples from 157 healthy patients and 167 with cancer;

Intensity measurements at 48,538 m/z (mass/charge) sites.

Fused lasso

$$\hat{\beta} = \operatorname{argmin} \sum_{i} (y_i - \sum_{j} x_{ij} \beta_j)^2$$
subject to $\sum_{j=1}^{p} |\beta_j| \le s_1$
and $\sum_{j=2}^{p} |\beta_j - \beta_{j-1}| \le s_2$

Example: p = 100, N = 20

Univariate and thresholded Lasso, $s_1 = 35.6$

Fusion, $s_2 = 27.7$ Fused lasso, $s_1 = 85.5, s_2 = 26.0$

Another example

Fusion $s_2 = 5.2$ Fused lasso $s_1 = 56.5, s_2 = .3$

Computational approach

- For Fixed s_1, s_2 , fused lasso criterion leads to a quadratic programming problem.
- For large p, the problem is difficult to solve and special care must be taken to avoid the use of p^2 storage elements. We use the two-phase active set algorithm sqopt of Gill et al. (1999), which is designed for quadratic programming problems with sparse linear constraints.
- We have not yet been able to derive a LAR-like algorithm for generating paths of solutions.
- We have an adhoc method for search through the feasible (s_1, s_2) region.
- Speed is currently a limiting factor. Can solve confortably for p = 2000 but not p = 20,000.

Quadratic programming formulation

Let $\beta_j = \beta_j^+ - \beta_j^-$, with $\beta_j^+, \beta_j^- \ge 0$. Define $\theta_j = \beta_j - \beta_{j-1}$ for j > 1 and $\theta_1 = \beta_1$. Let $\theta_j = \theta_j^+ - \theta_j^-$ with $\theta_j^+, \theta_j^- \ge 0$. Let L be a $p \times p$ matrix with $L_{ii} = 1$ and $L_{i+1,i} = -1$, and $L_{ij} = 0$ otherwise.

$$\hat{\beta} = \operatorname{argmin}(y - X\beta)^T (y - X\beta)$$
 subject to

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \leq \begin{pmatrix} L & 0 & 0 & -I & I \\ I & -I & I & 0 & 0 \\ 0 & e^{T} & e^{T} & 0 & 0 \\ 0 & 0 & 0 & e^{T} & e^{T} \end{pmatrix} \begin{pmatrix} \beta \\ \beta^{+} \\ \beta^{-} \\ \theta^{+} \end{pmatrix} \leq \begin{pmatrix} 0 \\ 0 \\ s_{1} \\ s_{2} \end{pmatrix},$$

in addition to the non-negativity constraints $\beta_j^+, \beta_j^-, \theta_j^+, \theta_j^- \geq 0$.

 s_1

Degrees of freedom

- Defined as df = $\sum cov(y_i, \hat{y}_i)/\sigma^2$.
- For Lasso, df \approx number of non-zero coefficients $\leq \min(N, p)$
- For fused lasso. $df \approx number of non-zero plateaus.$

Prostate data results

Method	Test $err/108$	df	# sites	s_1	s_2
Lasso	6	116	116	144	262
Fusion	19	168	171	175	200
Fused Lasso	6	122	344	184	222

Application to microarray data

- Apply hierarchical clustering to genes, to estimate an ordering for the genes.
- Use this ordering for fused lasso

Results for leukemia microarray example

Method	10-fold	Test	# genes
	CV error	Error	
Golub (50 genes)	3/38	4/34	50
Lasso $37 df$	1/38	1/34	37
Fused lasso 38 df	1/38	2/34	135
Fused lasso 20 df	1/38	4/34	737

~ "	-	D -	l	-		
Gene #	Las	Fus Las	Gene #	Las	Fus Las	Gene 7
9	0.00000	0.00203	421	-0.08874	-0.02506	765
10	0.00000	0.00495	422	0.00000	-0.00110	766
11	0.00000	0.00495				767
12	0.00000	0.00495	475	-0.01734	0.00000	768
13	0.00000	0.00495				76∌
14	0.00000	0.00495	522	0.00000	-0.00907	770
15	0.00000	0.00495	523	0.00000	-0.00907	771
			524	0.00000	-0.00907	772
22	0.01923	0.00745	525	0.00000	-0.00907	
23	0.00000	0.00745	526	0.00000	-0.00907	788
24	0.00000	0.00745	527	0.00000	-0.00907	
25	0.00000	0.00745	528	0.00000	-0.00907	798
26	0.00000	0.00745				799
27	0.01157	0.00294	530	0.01062	0.00000	800
31	-0.00227	0.00000	563	0.00000	-0.02018	815
			564	0.00000	-0.02018	
39	-0.00992	0.00000	565	0.00000	-0.02018	835
			566	0.00000	-0.02018	836
44	-0.00181	0.00000	567	0.00000	-0.02018	837
54	0.00000	-0.00830	570	0.00000	-0.00005	838 839
55	-0.02027	-0.00830	571	0.00000	-0.00005	840
			572	-0.00764	-0.00005	
59	-0.01383	0.00000				881
			579	0.00000	-0.00119	882
74	-0.00014	0.00000	580	0.00000	-0.00119	883
75	0.00000	-0.00537	581	0.00000	-0.00119	884
76	0.00000	-0.00537	582	0.00000	-0.00119	885
			583	-0.00220	-0.00119	
143	0.03479	0.01008				906
144	0.00000	0.01008	616	0.01102	0.01743	907
145	0.00000	0.01008	617	0.00495	0.01743	
146	0.00000	0.01008				926
147	0.00000	0.01008	670	-0.00496	0.00000	927
171	0.00000	0.00664	8 ⁶⁷⁵	0.00000	0.00000	928 929
172	0.00057	0.00664	676	0.00000	0.00000	930
173	0.00007	0.00664	677	0.00000	0.00000	931

Future directions

- Develop faster algorithm and friendly interface
- get more experience with real data

References

Gill, P., Murray, W. & Saunders, M. (1999), Users guide for sqopt 5.3: a fortran package for large-scale linear and quadratic programming., Technical report, Stanford University.