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‘ Outline I

e Review lasso and least angle regression

e Introduce fused lasso, with application to

protein mass spectroscopy and gene
expression data,




‘ General comments I

Applied genomics needs:

e New statistical methodology

e Careful application of existing methodology-
eg design of experiments, cross-validation

e Well-designed, free software with an

easy-to-use interface.

#1 criterion for choosing between statistical

methods: availability in a convenient package.




An example I

Cross-validation, the wrong and right way.

Consider a simple classifier for microarrays:

1. Starting with all genes (say 5000), find the 200
genes having the largest correlation with the class
labels

2. Carry about nearest-centroid classification using

only these 200 genes

How do we estimate the test set performance of this

classifier?
e Wrong: Apply cross-validation in step 2.
e Right: Apply cross-validation to steps 1 and 2.

It is easy to simulate realistic data with the class

labels independent of the outcome, — so that true test

error =50%— but “Wrong” CV error estimate is zero!

I have seen this error made in 4 high profile papers in
the couple of years. See Ambroise and McLachlan
PNAS 2002 for a nice discussion of this point.




‘ MicroArray Example I

Expression data for 38 Leukemia patients
(“Golub” data).

X matrix with 38 samples and 7129 variables
(genes)

Response y is dichotomous ALL (27) vs AML
(11)

Idea: fit a linear model y; = Bo + > . z:;5;,

and use this to predict class label y;.

Have also a separate test set of 34 patients




Linear regression via the Lasso (Tibshirani, 199

Data consists of N observations data on p
predictors z1, x2,...%p and an outcome
measurement y. Trying to predict y from
L1,L2,...Tp-

Assume y =0, ; =0, Var(z;) =1 for all j.
Minimize »;(y; — Y, %ij8;)* subject to

Zj 1Bi| <'s

With orthogonal predictors, solutions are soft

thresholded version of least squares
coefficients:

sign(5;) (1851 — )+
(v is a function of s)

For small values of the bound s, Lasso does
variable selection. See pictures.

Ridge regression- closely related to the lasso,

uses a penalty > 87 < s




Lasso and Ridge regression'




More on Lasso'

e Current implementations use quadratic

programming to compute solutions

e Can be applied when p > n. In that case,

number of non-zero coeflicients is at most n

(by convex duality)

e interesting consequences for applications, eg

microarray data
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‘Least Angle Regression — LARI

Like a “more democratic” version of forward

stepwise regression.

A

1. Start with r = v, 31,32, ...Bp = 0. Assume
z; standardized.

. Find predictor z; most correlated with r.

. Increase 3; in the direction of
sign(corr(r,z;)) until some other com-
petitor x; has as much correlation with

current residual as does Z;.

. Move (Bj, Bk) in the joint least squares direc-

tion for (x;, zx) until some other competitor
xzy has as much correlation with the current

residual

. Continue in this way until all predictors have
been entered. Stop when corr(r,z;) =0V j,
i.e. OLS solution.
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The LAR direction us at step 2 makes an equal

angle with x; and x».
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‘ LAR gives the lasso path'

e Start with LAR. If a coefficient crosses zero,

stop. Drop that predictor, recompute the
best direction and continue. This gives the

Lasso path
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Software for R and Splus'

lars () function fits all three models: lasso, lar
or forward.stagewise. Methods for prediction,
plotting, and cross-validation. Detailed
documentation provided. Visit
www-stat.stanford.edu/~hastie/Papers/#LARS

Main computations involve least squares fitting
using the active set of variables. Computations
managed by updating the Choleski R matrix (and
frequent downdating for lasso and forward

stagewise).
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The fused lasso.

e Note that when p > N, at most N lasso
coeflicients can be non-zero. Doesn’t seem

reasonable- too sparse!

e If there are many correlated features, Lasso
gives only one of them a non-zero coefficient

e Maybe correlated featured should have

similar coefficients
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Protein mass spectroscopy'

Blood serum samples from 157 healthy patients

and 167 with cancer;

Intensity measurements at 48,538 m/z

(mass/charge) sites.

Intensity
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Fused lasso I

B =argmin ) (yi — ) @i;6;)°

p
subject toz 18] < s1

i=1

p
and Z 1B — Bi—1] < s2
j=2
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‘Example: p =100, N = 20

Univariate and thresholded Lasso, s1 = 35.6

©o A

Coefficient
Coefficient

I w W \w v

V ‘, H\ MM '1

7 M\

0 20 40 60 80 100 60 80 100

Predictor Predictor

Fusion, s9 = 27.7 Fused lasso, s1 = 85.5,s59 = 26.0

_u_

Coefficient
Coefficient

0 20 40 60 80 100 0 20 40 60 80 100

Predictor Predictor

18



Another example

Lasso s1 = 4.2 Fusion s9 = 5.2 Fused lasso s1 = 56.5, so9 =

© A
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Predictor Predictor Predictor
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‘ Computational approach I

e For Fixed s1, s9, fused lasso criterion leads to

a quadratic programming problem.

For large p, the problem is difficult to solve
and special care must be taken to avoid the

use of p? storage elements. We use the

two-phase active set algorithm sqopt of Gill
et al. (1999), which is designed for quadratic
programming problems with sparse linear

constraints.

We have not yet been able to derive a
LAR-like algorithm for generating paths of
solutions.

We have an adhoc method for search through

the feasible (s1,s2) region.

Speed is currently a limiting factor. Can solve
confortably for p = 2000 but not p = 20, 000.
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‘Quadratic programming formulation'

Let B; = BJ‘-" — B, , with B;-',Bj_ > 0. Define

6; =06; —Bj—1 for j > 1 and 61 = B1. Let

0; = 9;" — ¢, with 9;", 0, > 0. Let L be a p X p matrix
with L;; = 1 and Liy1,:; = —1, and Lz‘j = (0 otherwise.

B = argmin(y — XB8)7 (y — XB) subject to

B
0 I I) (ﬁ) (0)
I 0 0 B 0
el 0 0 o
0

€ eT) \zi—) \82)

in addition to the non-negativity constraints
85,8 ,67,07 >0.

J J

0
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‘Degrees of freedom'

e Defined as df = > cov(y;, §;) /02

e For Lasso, df ~ number of non-zero

coefficients < min (N, p)

e For fused lasso. df ~ number of non-zero

plateaus.
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Prostate data results.

—— Fused lasso
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Method

Test err/108 df

#£ sites

Lasso

Fusion

Fused Lasso

6 116
19 168
6 122
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Application to microarray data'

e Apply hierarchical clustering to genes, to

estimate an ordering for the genes.

e Use this ordering for fused lasso

Results for leukemia microarray example
Method 10-fold Test  # genes

CV error Error

Golub (50 genes) 3/38 4/34 50

Lasso 37 df 1/38 1/34 37

Fused lasso 38 df 1/38 2/34

Fused lasso 20 df 1/38  4/34
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Future directions I

e Develop faster algorithm and friendly

interface

e get more experience with real data
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