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Motivation

Context:

» MCMC methods construct a Markov chain of dependent
samples from a target distribution

» Different methods work better on different distributions
» Extensive tuning may be required, limiting usefulness

» Comparisons between methods in existing research are often
confusing

Goals:
» Present comparisons between MCMC methods clearly

» Minimize end-user tuning



MCMC users spend a lot of time looking at trace plots
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Two (usually equivalent) ways of describing how well an MCMC
method performs on a specific distribution:

» Processor-seconds per independent observation

> invariant to chain length
» direct connection to user needs
> but, depends on test hardware and system load

» Density function evaluations per independent observation

> also invariant to chain length
» does not depend on test hardware or system load
» but, does not account for processor use by the sampler itself

But, what does “per independent observation” mean?



Correlation length /autocorrelation time, 7

» Define 7 by:
o0
T=142> pi (1)
k=1
where py is the ACF of {X;} at lag k:

cov(X;, Xj—k)

var(X)) (for all j)

Pk =

> If the sum in equation 1 converges, we have the CLT:

Vn/7(Xo — E(X})) = N(0,var(X)))

» The sample ACF is inaccurate for large lags, so we cannot use
equation 1 to estimate 7 directly.



Two ways of modeling the ACF (of a difficult example)
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» Intial monotone sequence (IMS): sum sample ACF until a
heuristic cutoff

» AR(AIC): autoregressive model with order chosen by AIC



Comparing optimally-tuned samplers

sampler

Density evaluations per independent obs. for four distributions
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» Easy to read: ARMS appears to do well

» But, samplers are often not optimally tuned
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» Narrow range of density evaluations per independent obs.




A tuning parameter plot

density evaluations per independent obs.

Performance of Metropolis on a Gaussian
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Comparing several samplers on several distributions

Each row is a distribution, each column is a sampler, and each panel plots
evaluations per independent observation (y) vs. scale tuning parameter (x).
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Summary

» We can create grids of samplers and distributions plotting
log-density evaluations per independent observation against a
tuning parameter.

» Grids allow researchers to compare MCMC methods on a wide
variety of distributions and tuning parameters.

» Comparison clarifies which methods are suitable for end-users
with minimal knowledge of MCMC.
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Performance of AR modeling of correlation length

Correlation length CI coverage and relative error for
effective sample sizes 10 and 200 from four distributions
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» When target variance is defined (i.e. excepting t,—»), nominal
95% ClI for 7 moderately underestimates true uncertainty

» Moderate relative errors allow broad comparisons with small
effective sample sizes



