Using Correlation Length to Compare MCMC Methods Graphically

Madeleine Thompson, advised by Radford Neal

April 29, 2010

Motivation

Context:

- MCMC methods construct a Markov chain of dependent samples from a target distribution
- Different methods work better on different distributions
- Extensive tuning may be required, limiting usefulness
- Comparisons between methods in existing research are often confusing

Goals:

- Present comparisons between MCMC methods clearly
- Minimize end-user tuning

MCMC users spend a lot of time looking at trace plots

Figures of merit

Two (usually equivalent) ways of describing how well an MCMC method performs on a specific distribution:

- Processor-seconds per independent observation
 - ▶ invariant to chain length
 - direct connection to user needs
 - but, depends on test hardware and system load
- ▶ Density function evaluations per independent observation
 - also invariant to chain length
 - does not depend on test hardware or system load
 - but, does not account for processor use by the sampler itself

But, what does "per independent observation" mean?

Correlation length/autocorrelation time, au

▶ Define τ by:

$$\tau = 1 + 2\sum_{k=1}^{\infty} \rho_k \tag{1}$$

where ρ_k is the ACF of $\{X_j\}$ at lag k:

$$\rho_k = \frac{\operatorname{cov}(X_j, X_{j-k})}{\operatorname{var}(X_j)} \quad \text{(for all } j\text{)}$$

▶ If the sum in equation 1 converges, we have the CLT:

$$\sqrt{n/ au}(ar{X}_n - E(X_j)) \Rightarrow N(0, \operatorname{var}(X_j))$$

The sample ACF is inaccurate for large lags, so we cannot use equation 1 to estimate τ directly.

Two ways of modeling the ACF (of a difficult example)

- Intial monotone sequence (IMS): sum sample ACF until a heuristic cutoff
- ► AR(AIC): autoregressive model with order chosen by AIC

Comparing optimally-tuned samplers

- ► Easy to read: ARMS appears to do well
- But, samplers are often not optimally tuned
- ▶ Narrow range of density evaluations per independent obs.

A tuning parameter plot

Performance of Metropolis on a Gaussian

scale tuning parameter

Comparing several samplers on several distributions

Each row is a distribution, each column is a sampler, and each panel plots evaluations per independent observation (y) vs. scale tuning parameter (x).

Summary

- We can create grids of samplers and distributions plotting log-density evaluations per independent observation against a tuning parameter.
- Grids allow researchers to compare MCMC methods on a wide variety of distributions and tuning parameters.
- Comparison clarifies which methods are suitable for end-users with minimal knowledge of MCMC.

References

- ► C. J. Geyer, "Practical Markov Chain Monte Carlo," Statistical Science 7 no. 4 (1992): 473–511.
- M. Plummer, N. Best, K. Cowles, and K. Vines, "CODA: Convergence Diagnosis and Output Analysis for MCMC," R News 6 no. 1 (Mar. 2006): 7–11.

Performance of AR modeling of correlation length

Correlation length CI coverage and relative error for effective sample sizes 10 and 200 from four distributions

- ▶ When target variance is defined (i.e. excepting $t_{\nu=2}$), nominal 95% CI for τ moderately underestimates true uncertainty
- Moderate relative errors allow broad comparisons with small effective sample sizes