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Estimating Power Spectrum:

Stationary process, x(t), t = −1,0,1, · · ·
Zero mean, E{x(t)} = 0, finite variance E{x2(t)} = σ2 < ∞

Spectral Representation (Cramér, Doob):

x(t) =
∫ 1

2

−1
2

ei2πftdX(f)

Power Spectral Density, or Spectrum S(f)

S(f)df = E{| dX(f) |2 }

(= Fourier Transform of the autocovariance)

Problem: Estimate S(f) from a finite data sample



Some Personal History — I

(1961) Started at Acadia. Tried to read “Prolate Spheroidal Wave

Functions (PSWF), Fourier Analysis and Uncertainty”

(1964) “. . . there is a lot of work being done on time–series, but I

have a feeling it’s on the wrong track.” — K. D. C. Haley

(1965) Started work at Bell Labs, Murray Hill, NJ.

Tukey & Cooley published the FFT

(1966) “Millimeter Waveguide Project”: Spectrum estimation of ge-

ometric distortions (mode–conversion loss).

(1967) Computing spectra: mean–value function, prewhitening, data

taper, FFT, correct for prewhitening.

(c1968) PSWF data taper with FFT → PhD (1971).

(c1972) Tried a multitaper with 2 prolate windows. It “split lines”,

so dropped it (temporarily).



WT4 Waveguide Diameter vs Distance



Waveguide Autocovariances (Multitaper & Bartlett)



Some Personal History — II

(c1974) “I can find at least 100 different ways to estimate the spec-

trum in the literature. What I want to know from you is

which is the right one, and why. And, if you are wrong, we

are talking about a measurable fraction of the US GNP”

— D. A. Alsberg

1) Using estimated spectrum for quality control

2) Expensive, ≈ cost of a Volkswagen turned to scrap

3) What if the system didn’t work?



Windowed Estimates, Tukey (1959, 1966)

Using data “taper” D(n)

ŜD(f) =

∣∣∣∣∣∣
N−1∑
n=0

x(n)D(n)e−i2πnf

∣∣∣∣∣∣
2

Good choice of D gave obviously better estimates of S(f)

E{ŜD(f)} = S(f)F

∣∣∣∣∣∣
N−1∑
n=0

D(n)e−i2πnf

∣∣∣∣∣∣
2

Many “Optimum” D(n)’s



Spectrum Estimates for WT4 Waveguide Diameter Data

Periodogram:

D(n) = constant

Multitaper:

D(n) = PSWF

Peaks: machinery

— Noisy Estimate



Windowed Estimates, Tukey (1959, 1966)

A problem · · ·

Only theory: John Tukey said it’s a good idea!

“If one were not blinded by the mathematical elegance of the

conventional approach, making unfounded assumptions as to the

values of unmeasured data and changing the data values that one

knows would be totally unacceptable”

J. P. Burg Thesis (Stanford, 1975)

(Plus quite a few similar.)



Some Personal History — III

(1977) Bell System Technical Journal papers written, end of

waveguide project. Transfer to Cellular Phone project

(1978) First Rome Air Development Center Spectrum Estimation

Workshop (Karhunen–Loeve in the frequency domain)

PSWF Tapers in the Time Domain

I knew it worked, but not why

(1978) D. Slepian, Prolate Spheroidal Wave Functions, Fourier Anal-

ysis and Uncertainty V: The Discrete Case

Now called “Slepian Sequences and functions”

(1981) ASSP Workshop on Spectral Estimation, McMaster

(1982) Spectrum Estimation and Harmonic Analysis

Proceedings of the IEEE, Simon Haykin, Guest Editor

Explained why several tapers were needed



Multitapers — I: Fundamental Integral Equation

Fourier Transform of available data, t̄ = (N − 1)/2

y(f) =
N−1∑
t=0

x(t)e−i2πf(t−t̄) (1)

Spectral Representation

x(t) =
∫ 1

2

−1
2

ei2πξ(t−t̄)dX(ξ) (2)

Fundamental (Fredholm) Integral Equation

y(f) =
∫ 1

2

−1
2

sinNπ(f − ξ)

sinπ(f − ξ)
dX(ξ) (3)

Least–squares solution in Slepian functions

λkVk(f) =
∫ W

−W

sinNπ(f − ξ)

sinπ(f − ξ)
Vk(ξ)dξ (4)



Multitaper Solution

Center frequency f0, solve on (f0 −W, f0 + W )

yk(f) =
1

λk

∫ W

−W
y(f0 − ξ) Vk(ξ)dξ (5)

· · · some magic · · ·

=
N−1∑
t=0

x(t) v
(k)
t e−i2πft (6)

⇒ Fourier Transform of { data × taper }
⇒ Orthonormal expansion of { data × e−i2πft }

VERY IMPORTANT: k = 0,1, · · ·K ≈ 2NW

First term, y0(f) ≈ Tukey’s direct estimate (1977 BSTJ)



Slepian Sequences = Data Tapers

 0 10 20 30 40 50 60 70 80 90 100

- 
0.

2
- 

0.
1

0.
0

0.
1

0.
2

0

Percent of Sample Duration

St
an

da
rd

iz
ed

 D
at

a 
T

ap
er

k=12k=3



Spectral Windows, |Vk(f)|2
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Multitaper Spectrum Estimates

Slepian Sequences define the dimensionality of the time–frequency

region (−W, W )× [0, N − 1] .

d̂X(f + ξ) ∼
K−1∑
k=0

yk(f)Vk(ξ) dξ (7)

Simplest Estimate, Average Power in (f −W, f + W )

Ŝ(f) =
1

N

1

2W

∫ W

−W

∣∣∣d̂X(f + ξ)
∣∣∣2 dξ (8)

=
1

2NW

K−1∑
k=0

λk |yk(f)|2 ≈
1

K

K−1∑
k=0

|yk(f)|2 (9)

— A consistent estimate



Where are we?

1) Start: Finite sample from a stationary process

2) Take its Fourier transform, invoke spectral representation

3) Get Fredholm integral equation: no unique solution

4) Bash on regardless: do a local least–squares solution

Eigenfunctions are Slepians

5) Eigencoefficients = Fourier transform { Data × taper }

6) Split eigencoefficient into local info and broad–band bias

Broad–band bias comes from frequencies outside

(f −W, f + W ) — bound and ignore.

Local: Lots of tools — F–test, Quadratic–Inverse, MSC · · ·



Other Side of Fourier Transform — Autocorrelations

Basic Definition: Rx(τ) = E{x(t + τ)x∗(t)} = R(τ ; {x})
Implies:

1) Quadratic scaling

2) Non-negativity

3) Modulation covariance

R(τ ; {eiωtx(t)}) = eiωτR(τ ; {x})

⇒ Need Multiple Taper Estimate (McWhorter & Scharf 1998)

R̂mt(τ) =
∫ 1

2

−1
2

Ŝmt(f) ei2πfτ df (10)

=
1

K

K−1∑
k=0

N−1∑
n=τ

x(n) v
(k)
n x(n− τ) v

(k)
n−τ (11)

= Average of autocorrelations of {x(n) v
(k)
n }



Other Side of Fourier Transform — Autocorrelations — II

Ŝ(f) = S(f)
Ŝ(f)

S(f)
= S(f)×G(f) = S(f)× (1 + δG(f))

“an observed autocorrelation always exhibits less damping than

the theoretical” – Bartlett

Ŝ(f) ⇐⇒ R̂(τ) = R(τ) + R(τ)Fδg(τ)

E{|δg(τ)|2} ≈
1

N
( 1−

|τ |
N

)
[
sin 2πWτ

2πWτ

]2
Bartlett autocorrelations

R̂(τ) =
1

N

N−τ∑
n=1

x(n)x(n + τ)

= Fourier transform { Periodogram }



Waveguide Autocovariances (Multitaper & Bartlett)



Simulation comparing Bartlett & Multitaper Autocovariances

Bartlett Estimate Multitaper, first 250



Some Personal History — IV

(1983) Green Scholar, Scripps Institution of Oceanography, San Diego

Start of switch from Engineer to Scientist

(1984) “Mathematics of Communications Research Department.”

(Shannon’s Department at Bell Labs.)

(1985) More Randomness: NSF review by someone at Scripps lead

to working with John Imbrie (Brown) on paleoclimate — last

700,000 years (Plus ∼$2 Billion savings for AT&T)

(1989) “Random” Summer Student: Cynthia Kuo

(1990) Climate: Philosophical Transactions, Royal Society of

London, A330, A332

Coherence between CO2 and Temperature: Nature

(1995) The Seasons, Global Temperature, and Precession

“Persistence” — Phil Jones, Comment Science (1995)



Part 4: Climate

Harmonic F–test for periodic components

Stationary series plus periodic terms

x(t) = xs(t) + A cos(2πfot + θ)

Deterministic mean–value in eigencoefficients

yk(f) = ys,k(f) +
A

2
eiθ Vk(f − fo)

Least–squares regression, assume S(f) “locally white”

Ordinary Regression F test

F (f) = c
Energy explained by Periodic Term(f)

Residual Energy(f)



Nile River: Yearly Minimum from 622-1284 AD

(Claimed to be Long Memory?)



F-test for Nile River data: very low frequencies

5 out of 6 peaks named and known



Part 4: Climate — Summary

• Fluctuations in CO2 and temperature are coherent

• Period of annual cycle often not equal to tropical year

• Central England follows general precession constant

• Solar Irradiance alone does not explain temperature changes

(Average and Amplitude of Annual Cycle now out of phase)

• Correct for precession: CO2 and Solar Irradiance ∼ 10σ

Solar sensitivity ≈ Stefan–Boltzmann

CO2: 2.15
◦
C/(2 ·CO2) — PNAS (1997)

• Many long–term solar effects — Large

• Many Short–Period solar oscillations in average and variance



Some Personal History — IV

(1993) Accidental discovery: Solar Modes in Space

(Active Solar Maximum — 1989 blackout)

Communications Satellite “anomalies”

Interplanetary magnetic field, charged particles

Dropped calls on Cell Phones

(1995) DJT, Maclennan, Lanzerotti, Propagation of solar oscilla-

tions through the interplanetary medium, Nature

(1996) Vigorously attacked

— Everyone “knows” interplanetary space is “turbulent”!

(2009) Ghosh, DJT, Matthaeus, Lanzerotti, Coexistence of turbu-

lence and discrete modes, JGR

(2007) DJT, Lanzerotti, Vernon, Lessard, Smith Solar Modal Struc-

ture of the Engineering Environment, Proc. IEEE

(2009) Two-Year Killam Research Fellowship



Helioseismology

Several families of “modes”

P– Pressure, P–modes, Acoustic Standing waves

Bounce around surface, ∼ 10 Million measured

G– Gravity or G–Modes, Buoyancy

Density inversion near top of solar core

No accepted G–mode detections in literature

Spherical harmonic description

3 “quantum numbers” for each mode

n number of radial nodes

l number of nodes in latitude

m number of nodes in longitude, −l ≤ m ≤ +l

Rotational Splitting: each l, n mode has 2l + 1 “singlets”



Solar Gravity or g–modes

“Holy Grail” of helioseismology — Maximum in the core

Modes ≈ equally spaced in period,

Low frequencies densely packed

Fundamental scaling not quite known
Rotational Splitting by the Solar core: — unknown!

Fl,m,n = fnl − rnl ·m
+m = prograde rotation (so lower observed frequency)

Effective value of rnl depends on rotation profile and mode

(Has to be estimated for each mode.)

May be multiple splittings inside the Sun

Additional observed splitting from spacecraft orbit.



G–Modes — Problems

Lots of theory, no repeatable observations

GOLF: low SNR, No spatial resolution:

Get reasonable spatial resolution with Ulysses, (slow)

Limited (±7◦.5) with ACE.

Core rotation: Papers claiming both fast and slow

Theory: G–Mode frequencies depend on:

Irradiance,

Internal solar magnetic fields,

Chemical composition of the Sun,

Stuff we don’t know about: WIMPS, monopoles, ???

“Quality factor” Q ∼ 1011 Interpretated ⇒ stable frequencies.

“The hallmark of good science is that it uses models and ’theory’

but never believes them.” — Martin Wilk



More G–Mode Problems

1) “Quest” for Solar G–Modes started in the 1970’s

2) Most data sampled at ∆t = 50 seconds or 1 minute

3) Missing data, outliers, spacecraft problems, etc.

(Must be identified and interpolated)

4) Low pass filter, decimate to 16 minutes for g–modes

6) Power spectra computed from 5 to 10 years of data

• Thousands of G–modes

• Basic spectra are complicated

• Splittings give a spectrum that looks like “grass”



Comparison of GOLF and ACE G–Mode Frequencies

Reproducible Detections

Six “candidates”

from SOHO GOLF,

(Not a single mode)

Mathur, ApJ 668 (2007)

ACE SWEPAM

Proton Density

1998–2005

Frequencies ±25nHz

Detections above 99.9%

Five of Six

P =
(
6
5

)
(0.001)5(0.999)1

≈ 6× 10−15

g–modes are detected

But not identified



Identification of the l = 1, n = −3 G-Mode

ACE Solar wind density, Jan 1998 – Nov 2005

Singlet

Centers

148.578µHz

147.792

147.029



Identification of the l = 1, n = −3 G-Mode

ACE Solar wind density, Jan 1998 – Nov 2005
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Identification of the l = 1, n = −3 G-Mode

ACE Solar wind density, Jan 1998 – Nov 2005

Orbital Splitting, l = 1, m = 0

1) Mode patterns are ≈ spherical harmonics

2) Solar wind flows radially outward

3) Y1,0(θ) = c · cos(Heliographic co–latitude)

(so zero on the solar equator)

4) Ecliptic tilted 7◦.5 from the solar equator

5) ACE is in the ecliptic at L1

6) Odd–parity modes split ±1 cycle/year, low amplitude

7) Phase difference locked to Earth’s orbit.

— Don’t take too seriously because of the Sun’s

North–South Asymmetry, ellipticity of orbit.



Identification of the l = 1, n = −3 G-Mode

ACE Solar wind density, Jan 1998 – Nov 2005
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Identification of the l = 1, n = −3 G-Mode

ACE Solar wind density, Jan 1998 – Nov 2005
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Identification of the l = 1, n = −3 G-Mode

ACE Solar wind density, Jan 1998 – Nov 2005

l = 1, n = −3 comparisons

147.792µHz Estimated Center

150.545µHz Gough (1994)

153.300µHz Mathur (2007)

153.720µHz Provost(2000)

Estimate outside theoretical predictions

Splitting: (Ωc = frequency of solar core rotation)

Ωc = 1539 nHz Estimated

Ωc = 1222 nHz Gough (1994) — very educated guess!

Effective Core Rotation Period < 7.52 days



Identification of the l = 2, n = −1 G-Mode

ACE Solar wind density, Jan 1998 – Nov 2005
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Verification from Ulysses

1) Mode identification data from ACE at L1

2) Easy to “detect” an L = 3 mode in the “wreckage” of an

L = 4 or higher mode

3) Observed frequencies at ACE are Synodic

4) fACE(m) = fSidereal − m × 32nHz

( 32nHz = 1 cycle/year, +m = prograde )

5) Ulysses in an approximately sidereal orbit



Ulysses Orbit, Heliographic–Inertial Coordinates

Ulysses Orbit

X—Z plane

(Solar polar)

Variable Radius

≈ quadratic phase

≈ Linear Frequency

2001: Too fast!



Verification from Ulysses

1) Start with synodic frequencies from ACE

2) Offset by m× 32nHz (needs m correct)

3) Look for a line in spectra of data from Ulysses

4) Some complications

a) South–to–North pass too fast

b) Distance to Sun changes from ∼ 2 to 5.4 to ∼ 2 AU

approximately quadratic phase (linear frequency) shift

c) Most modes have 180◦ phase jumps at nodes

5) Of 12 singlets (l = 2, n = −1 and l = 3,n = −2 modes)

9 matches, 2 misses, 1 iffy (Radial Magnetic Field)

6) Quadratic Phase implies a propagation velocity ∼ c/3



Ulysses Frequencies in Daily Temperature Spectrum
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Frequency Shift with Irradiance

1998 1999 2000 2001 2002 2003 2004 2005

Center time of Frequency Measurement block

-4
0

-3
0

-2
0

-1
0

 0
 1

0
 2

0
 3

0
 4

0

F
re

q
u

e
n

c
y

 s
h

if
t,

 n
H

z

Fr

fit

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

U
R

S
I 

S
e

ri
e

s
 D

 a
b

s
o

lu
te

 f
lu

x

1998 2000 2002 2004
Date of Penticton Flux Measurement

F10.7

ACE Solar Wind

Proton Density

0.97–year blocks

offset 0.359–year

Center: 219.59µHz

(GOLF “candidate”)

Fit:

1.276–year “Tachocline”

F10.7 solar flux

Significant Shift

∼ ±20nHz

Mode frequency

LEADS

F10.7 by ∼ 1 year



What went wrong — why weren’t g–modes detected?

1) Wrong observing frequency (optical)

Low signal–to–noise ratio.

2) Poor analysis methods, poor interpolation through gaps

Spectra are mostly periodograms — lines too narrow,

poor sensitivity, high false detection rate.

4) Taking theory too seriously.

Assuming “high Q” implies high frequency stability

Theory predicts rapid attenuation with l.

5) Not taking theory seriously enough

Theory predicts frequency shift with irradiance,

magnetic fields (Observed in P–modes!)

6) “Not invented here” attitude,

Frequent “reinvention” of analysis methods.

7) Not enough “exploratory data analysis”



Solar Modes in Space: Conclusions

• Same frequencies from optical helioseismology data from

SOHO and various instruments on ACE.

• Frequency modulation: Solar (22–year Hale) cycle

Shift in f leads irradiance by ∼ 1 year

Mode Splitting from Orbit

• Some G–Modes Identified, all 2l + 1 singlets

Repeatable Detections

• Tentative detection of some modes with l > 12

• Agreement with theory:
– Good at higher (∼ 250µHz) frequencies

– Less at lower (∼ 150µHz) frequencies

• The Sun has a FAST core, > 3× surface rate.



Overall Summary

Multitapers: A better way to analyze time series

(Power Spectra, autocorrelations, lots of additional tools)

F–test for periodic components

Climate:

CO2 effects too strong to miss

Complicated stochastic structure

Solar Gravity Modes:

Detected and Identified

Repeatable Detections

The Sun has a fast core!

Thank you!


