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Online Modeling and Forecasting

Suppose that we observe y1, y2, . . . at every time point t and the goal is

to construct a simple and reliable model for online (real time) filtering

and forecasting.

The simple and easy choice is to employ an autoregressive (AR) model

a(B)yt = vt, (1)

where

a(λ) = 1+ a1λ+ . . .+ aqλ
q, a(λ) ̸= 0, ∀λ ≤ 1, (2)

B is a backshift operator (Byt = yt−1) and vt is white noise (Evt = 0,

Ev2t = σ2) with E|vt|β ≤ C < ∞, β ≥ 4.



Online Modeling and Forecasting: contd

The “true” AR order q is typically unknown. Moreover, when (1) serves
only as an approximation of {yt}, there exists no “true” AR model. Hence,
potentially q = ∞ and we get:

a(λ) = 1+ a1λ+ . . . , (3)

where

a(λ) ̸= 0, ∀λ ≤ 1,
∞∑
i=1

|ai| < ∞. (4)

Notice that {yt} can be also represented as a causal moving average
model of infinite order, MA(∞), i.e.

yt = b(B)vt, (5)

where

b(λ) =
1

a(λ)
= 1+ b1λ+ . . . ̸= 0, ∀λ ≤ 1, and

∞∑
i=1

|bi| < ∞. (6)

Hence, the spectral density of f(λ) of {yt} satisfies:

0 < F1 < f(λ) < F2, F1, F2 > 0 (7)



Estimation

To estimate unknown AR(∞), we re-write it in a state-space form:

yt = Φ′
t−1τ∗ + vt, (8)

where Φt−1 = (yt−1, yt−2, . . . , y1,0, . . .) and τ∗ = −(a1, a2, . . .) are in ℓ2(N).
Since

R[k − 1]a1 +R[k − 2]a2 + . . . = R[k],

R[k] = E{ytyt+k}, k = 1,2, . . . , (9)

we form a Yule-Walker (YW) system of infinite order

Rτ = r, (10)

where

R =

 R[0] R[1] . . .
R[1] R[0] . . .
... ... . . .

 r = (R[1], R[2], . . .)′.

Since the population covariance R is a positive definite linear operator:

ℓ2(N) → ℓ2(N), we get a unique solution in ℓ2(N):

τ = R−1r. (11)



Truncated Estimation

Clearly, in practice we cannot solve an infinite number of equations (11).

Let us choose some truncation order p. Then using an orthogonal pro-

jector Pp in ℓ2(N), we obtain a truncated Yule-Walker system

PpRPpτk = Ppr. (12)

Let Rp = PpRPp. Similarly rp = Ppr and τp = Ppτ . Clearly, Rp > 0. Hence,

τp = R−1
p rp. (13)

If R̂p,n and r̂ are the sample estimates of Rp,n and r, then the sample

estimate of τp, given observations up to time n, is provided by

τ̂p = R̂−1
p,nr̂p. (14)



Model Selection and A Path to Regularization

When we predict, we typically use AIC to estimate p, i.e.

AIC(p) = ln σ̂p
2 +

2p

n
,

where σ̂p2 is the sample variance of 1-step ahead fcst. For {yt} with short

memory, typically pAIC = O(log(n)).

However, if {yt} ∼ AR(∞), all finite AR approximations are wrong. To

reduce the error of approximation, we need p → ∞ when n → ∞. Hence,

for on-line modeling and forecasting, pAIC frequently needs to be refined

upon arrival of new data. Thus, all the AR parameters need to be recal-

culated for a new AR(pAIC′
) model (pAIC ̸= pAIC′

), which increases the

computational costs.



Model Selection and A Path to Regularization: contd

A model selection criterion is called to be asymptotically efficient for a

same-realization prediction of an AR(∞) process if the yielded model

order p∗n satisfies the following condition (Ing and Wei, 2005):

lim
n→∞ sup

E
{
(yn+1 − ŷn+1(p

∗
n))

2 − σ2
}

min1≤p≤Kn E
{
(yn+1 − ŷn+1(p))2 − σ2

} ≤ 1. (15)

Similarly, a model selection criterion is said to be strongly asymptot-

ically efficient for a same-realization prediction of an AR(∞) process

if

lim
n→∞ sup

E
{
(yn+1 − ŷn+1(p

∗
n))

2 − σ2
}

inf În∈Jn E
{
(yn+1 − ŷn+1(În))2 − σ2

} = 1. (16)

Here Cl ≤ K2+δ
n /n ≤ Cu for some positive δ, Cl and Cu; Jn is the family

of all zn-measurable random variables taking on values on {1,2, . . .Kn},
and zn is the σ-algebra generated by {y1, y2, . . . , yn}



Model Selection and A Path to Regularization: contd

Ing and Wei (2005) show that AIC is asymptotically efficient but not

strongly asymptotically efficient for AR(∞), and instead it is suggested

to select an approximating model based on the conditional mean squared

prediction error (MSPE)

E
{
(yn+1 − ŷn+1(pn)|y1, . . . , yn)2 − σ2

}
. (17)

or its sample estimate. Studies of Ing and Wei (2005) suggest that

higher order models that are selected by MSPE can be much more effi-

cient than models selected by AIC for the same sample size. However,

a sample covariance matrix of a high order might be a poor estimate of

the population covariance matrix.

Hence, an alternative idea is to “overestimate” p, i.e. from the beginning

to use a sample cov. matrix of up to a greatest possibly “expected”

order that can be employed for modeling and forecasting the observed

process {yt}, and then to regularize the “oversized” matrix, to ensure

that it provides a good estimate of the population covariance matrix.



Regularization

E.g., we can consider a banding operator Bk:

Bk(R) = (R[i− j]1|i−j|≤k) =



R[0] R[1] . . . R[k] 0 . . .
R[1] R[0] . . . R[k − 1] R[k] . . .
... ... . . . ... ... . . .

R[k] R[k − 1] . . . R[0] R[1] . . .
0 R[k] . . . R[1] R[0] . . .
... ... ... ... ... . . .


or a thresholding operator Ts = (R[i− j]1|R[i−j]|≥s)

Banding Bk preserves the symmetric Toeplitz structure of R and, hence,
is a more natural choice for time series. Hence, we get a banded Yule-
Walker system

Bk(R̂p,n)τ̂
b
p,n = r̂p. (18)

Note that AIC or other IC correspond to applying an orthogonal projec-
tor PpAIC to R̂, while banding can be viewed as a superposition of two
operators, i.e. Bk and Pp.



Asymptotic Consistency of Banded Estimates

Theorem 1. Let yt be generated by the model (1)-(4) and β ≥ 4. Let

0 < δ1 < 0.5, 0 < δ2 < 1 and 1− 2δ1 − δ2 > 0. If k ∼ (p/n)−δ2, then

||Bk(R̂p,n)−Rp||F = O

([
p

n

]δ1)
, (19)

where R̂p,n = 1
n

∑n
k=1 PpΦkΦ

′
kPp.

In view of Theorem 1, we can now show that banded regularized YW

estimate τ̂ bp,n is a consistent estimate of the truncated vector of population

parameters τp.

Corollary 1. Under the conditions of Theorem 1, if p/n → 0 as p → ∞
and n → ∞, then

||τp − τ̂ bp,n|| → 0. (20)



Selection of an Optimal Band

We choose an optimal band k by a cross-validation (Bickel and Levina,
2008a and 2008b; Chen and Gel, 2009). We divide the training set Ω of
size n into two consecutive segments, Ω1 and Ω2 of size n1 and n2, where
n1 ∼ n/3. Then we compare the banded “target” quantity ĝB(Ω1) with
the “target” quantity ĝ(Ω2). Here ĝ(Ω2) can be viewed as a proxy to

the population “target” quantity g. The selected “target” quantities
of interest can be a covariance matrix or a mean squared error of h-step
ahead forecasts.

The optimal band is then selected as a minimizer of the empirical loss
function over N splits, i.e.

k̂ = argmin
k

1

N

N∑
ν=1

||ĝB(Ω1,ν)− ĝ(Ω2,ν)||. (21)

Since {yt} is a time series, random splitting does not work. We can either
employ forward–backward splits or select Ω such that Ω1

∪
Ω2 is a proper

subset of Ω, i.e. n1 + n2 < n with n2 ≈ 2n1, and then applying random
selection of Ω1

∪
Ω2 within Ω.



Selection of an Optimal Band: contd

Our goal now is to show that the rates of convergence for an empirical

loss function

1

N

N∑
ν=1

||ĝB(Ω1,ν)− ĝ(Ω2,ν)||, (22)

and the oracle loss function

E||ĝB(Ω1,ν)− ĝ(Ω2,ν)|| (23)

are of the same order and, hence, asymptotically the empirical band k̂

performs as well as the oracle band selection.



Selection of an Optimal Band: contd

Assume w.l.g. that the number of splits N = 1. Then we get the

following result for banded estimates of covariance matrices:

Theorem 3. Let k̂ and ko be the band selected from minimizing the

empirical and oracle loss functions (22) and (23) respectively. Then,

under the conditions of Theorem 1 and for β ≥ 4,

||Bk̂

(
R̂p

)
−Rp||F = ||Bk0

(
R̂p

)
−Rp||F (1 + o(1)). (24)

Hence,

||Bk̂

(
R̂p

)
−Rp||F = O

(
p

n

)δ
, 0 < δ < 0.5. (25)



Selection of an Optimal Band: contd

A similar result holds if we consider a loss function for prediction. In

particular, let

losso = E|yt+h −Φ′
p,tτ̂

b
p|2, (26)

losse =
1

N

T0+N∑
t=T0

|yt+h −Φ′
p,tτ̂

b
p|2, (27)

be a loss function based on the oracle and empirical banding estimates

respectively. Let b̂ and bo be the band selected from minimizing the

empirical and oracle loss functions (26) and (27) respectively. Then we

can state the following asymptotic result on the banded prediction.

Corollary 2. Under the conditions of Theorem 2 and for β ≥ 4,

1

N

T0+N∑
t=T0

|yt+h −Φ′
p,tτ̂

b̂
p|2 = E|yt+h −Φ′

p,tτ̂
bo
p |2(1 + o(1)). (28)

Remarkably, the empirical loss function (27) for banded prediction can

be viewed as a sample approximation to MSPE in (17).



Performance. Simulation Example

Consider the stationary stochastic process described by the transfer func-

tion (Mari J. et al., 2000):

W (z) =
1− 0.8762z +0.0184z2 +0.0197z3 +0.8591z4 − 0.7491z5

1− 0.6281z +0.3597z2 +0.2634z3 − 0.5322z4 +0.7900z5

We choose an optimal model based on AIC and the first 200 observations

as a training set:

pAIC
200 = arg min

0≤p≤24
AIC(p), (29)

and the optimal banding parameter k is selected by cross-validation as

follows

k∗ = arg min
0≤j≤24

1

50

200∑
t=150

[yt+1 − ŷ
j
t+1]

2, (30)

i.e. the first 150 observations of the training set are used to estimate the

banded model and the next 50 observations are used for cross-validation.

Here we apply banding to a 24× 24-sample information matrix.



Performance. Simulation Example: contd

Based on the models (29)–(30), we construct 1-step ahead out-of-sample

predictions of the next 300 observations, i.e. y201, y202, . . . , y500, and

calculate the respective root mean squared prediction error (RMSPE):{
1

300

500∑
t=201

[yt+1 − ŷ
reg,p∗
t+1 ]2

}1/2

− 1. (31)

We then apply this procedure to 100 Monte Carlo simulations of {yt}500t=1.

MSPE of 1-step prediction
AR(6) AIC B21

1.78 1.10

Hence, banded forecasts provide about 38% smaller MSPE than the AIC-

based models.



Performance. Forecasting Niño Region Sea Surface

Temperature (SST) Indexes

El Niño is a phenomenon in the equatorial Pacific Ocean manifested

in increase of sea surface temperatures (SST). El Niño has a strong

impact on local and global climate by affecting atmospheric circulation

and, hence, rainfall and temperature. To characterize the nature of El

Niño, sea surface temperature (SST) anomalies, i.e. positive deviations

from the mean temperature, in certain regions of the Pacific are recorded

and analyzed. SST is also used for prediction of future state of the ocean

and, hence, El Niño. One of the widely employed SST indexes refers to

measurements of ocean in the Nino 3.4 region, bounded by 120W–170W

and 5S–5N.
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The time series plot of Nino Sea Surface Temperature Indexes



Performance. Forecasting Niño Region Sea Surface

Temperature (SST) Indexes

We consider monthly observations of the Niño 3.4 SST index (in C0)
from January 1950 to April 1993. We select the training window of the
120 observations, where the first 90 observations are used to estimate
the banded 10 × 10-covariance matrix and the next 30 observations are
employed for cross-validation to obtain an optimal banding parameter.
This selection procedures yields an optimal band of 9. The optimal
AR(3) model by means of AIC is selected using the whole training set of
120 observations, i.e. from January 1950 to December 1959.

The next 400 observations, i.e. from January 1960 to April 1993, are
employed for out-of-sample verification of one-step ahead forecasts, i.e.
we compare MSPE {

1

400

520∑
t=121

[yt+1 − ŷ
reg,p∗
t+1 ]2

}1/2

.

We find that MSPE of the AIC-based model is 5.54Co while the respected
banded MSPE is 3.67Co, which about 34% smaller.



Conclusions and Future Research

• consistency and efficiency properties of a banded regularization as an

information criterion;

• a combination of re-enforced Toeplitz-ation and thresholding in order

to caputure a more general class of sparse models;

• banding for long memory processes, i.e. AR(∞) with hyperbolically

decaying coefficients, nonlinear and locally linear time series.


