Approximate Counting CSPs

Andrei A. Bulatov Simon Fraser University

Fields Institute 2011

Constraint Satisfaction

Let Γ be a set of relations

```
\#CSP(\Gamma):
```

Instance: (V, C).

Objective: How many solutions does (V, C) have?

Let B be a relational structure

#CSP(B):

Instance: A relational structure **A** of the same type as **B**.

Objective: How many homomorphisms from A to B

are there?

Counting Homomorphisms

#k-Coloring:

Instance: A graph G.

Objective: How many homomorphisms from G to

More general: Let H be a (di)graph #H-Coloring = #CSP(H)

Counting Homomorphisms

#Independent Set:

Instance: A graph G.

Objective: How many homomorphisms from G to

 H_{is} are there? H_{is} are there? H_{is}

Examples: #SAT, Linear Equations

#3-SAT: $= \#CSP(c_3)$

Instance: A propositional formula $\Phi = C_1 \land ... \land C_n$ in 3-CNF.

Objective: How many satisfying assignments are there?

#Linear Equations:

= #CSP(F)

Instance: A system of linear equations

$$\begin{cases} a_{11}x_1 + \dots + a_{1m}x_m = b_1 \\ \dots \\ a_{n1}x_1 + \dots + a_{nm}x_m = b_n \end{cases}$$

Objective: How many solutions are there?

Counting Problems: Fourier Coefficients

Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean operation and $S = \{i_1, ..., i_k\} \subseteq \{1, ..., n\}$

Fourier coefficient $\hat{f}(S)$ is given by

$$\hat{f}(S) = \frac{1}{2^n} \sum_{x_1, \dots, x_n \in \{0,1\}^n} (-1)^{f(x_1, \dots, x_n)} (-1)^{x_{i_1} + \dots + x_{i_k}}$$

Observe that computing $\hat{f}(S)$ reduces to counting the zeroes of $f(x_1,...,x_n) + x_{i_1} + \cdots + x_{i_k}$

Weighted #CSP

 Γ is a set of functions $f: B \to \mathbb{R}$ (natural, real, complex) Instance of $\#\text{CSP}(\Gamma)$: (V, C), C is a set of `constraints' $f(\vec{x})$

Given an instance I = (V, C) the weight of a mapping $\sigma: V \to B$ is computed as

$$w(\sigma) = \prod_{f(\vec{u}) \in \mathcal{C}} f(\sigma(\vec{u}))$$

Then

$$Z(I) = \sum_{\sigma: V \to B} w(\sigma)$$

Spin Systems

A particle can have one of the two spins

Two particles interact iff they have the same spin

A system of interacting particles form a graph with edge weights $\gamma_e > -1$, a spin system

Potts Model

A configuration of the spin system S is an assignment of spins $\sigma: S \to \{L,R\}$

Energy of the system is
$$\frac{1}{H(\sigma)} = \prod_{e=(u,v) \text{ an edge}} (1 + \gamma_e(\sigma(u) = \sigma(v)))$$

The probability the system is in configuration σ equals

$$\frac{1}{Z} \left(\frac{1}{T \cdot H(\sigma)} \right)$$
 where $Z = \sum_{\sigma} \frac{1}{T \cdot H(\sigma)}$ is the partition

function, and T is temperature (Gibbs distribution)

$$Z_{\text{Potts}} = \sum_{\sigma} \prod_{e=(u,v) \text{ an edge}} (1 + \gamma_e(\sigma(u) = \sigma(v)))$$

Potts Model (cntd)

Thus Potts model is equivalent to $\# CSP(\Gamma)$ where Γ contains all binary functions of the form

$$\begin{pmatrix} 1+\gamma & 1 \\ 1 & 1+\gamma \end{pmatrix}, \quad \gamma \in \mathbb{R}$$

Exact Counting: CSP

Theorem (B.; 2008)

For any Γ the problem $\# CSP(\Gamma)$ is either polynomial time solvable, or # P-complete

Theorem (Dyer, Richerby.; 2010)

Given Γ , the problem of deciding if $\#CSP(\Gamma)$ is poly time or not is in NP.

Exact Counting: Weighted CSP

Corollary (B.; 2008)

For any Γ of non-negative rational valued functions the problem $\# \mathsf{CSP}(\Gamma)$ is either polynomial time solvable, or $\# \mathsf{P}$ -complete

Theorem (Cai, Chen; 2010)

For any Γ of non-negative real valued functions the problem $\#\mathsf{CSP}(\Gamma)$ is either poly time solvable, or $\#\mathsf{P}\text{-}\mathsf{complete}$

Theorem (B.,Dyer,Goldberg, et al.; 2009) For any Γ of functions $f: \{0,1\}^k \to \mathbb{Q}$ the problem $\#\mathsf{CSP}(\Gamma)$ is either polynomial time solvable, or $\#\mathsf{P}$ -complete

Approximation

Relative error:

$$\Pr[e^{-\varepsilon}Z(I) \le A(I) \le e^{\varepsilon}Z(I)] \ge 3/4$$

An FPRAS: given I and ε , output A(I) satisfying the inequality above in time polynomial in |I| and ε^{-1}

Sampling

Given an instance of CSP and a probability distribution on its solutions, output a solution according to the distribution

- output a random 3-coloring
- output an independent set with probability proportional to its size

An approximate sampler: given I, distribution π_I and ϵ , outputs σ according to probability distribution ω_I such that the statistical distance between ω_I and π_I is less than ϵ , an runs in time polynomial in |I| and ϵ^{-1}

Counting and Sampling

Theorem (Jerrum, Valiant, Vazirani; 1986) If $\#\text{CSP}(\Gamma)$ is self-reducible then an FPRAS exists iff an approximate sampler exists

Let *I* be an instance. CSP is self reducible if we can fix value of a variable.

If we can count, choose a variable v, and let N_d be the number of solutions with v=d. Choose value of v according to distribution N_d , $d \in D$, substitute, and recurse. If we can sample, estimate the probability $p_{v=d} = {N_d / N}$. Substitute any value with nonzero probability, and recurse. The answer is $p_{v_1=d_1} \cdot p_{v_2=d_2} \cdot \ldots \cdot p_{v_n=d_n}$

Easy Problems

Problems that can be solved exactly are easy There are other easy problems

Other easy problems from Potts model, solved using Markov chains (see Jerrum et al.)
Also #Match and #DNF

AP-Reduction

An AP-reduction from P to P' is a randomized algorithm A solving P using an oracle for P'.

Input: (I,ε) , I an instance of P

Oracle call: (J,δ) , $\delta^{-1} \leq \text{poly}(|I|, \varepsilon^{-1})$

Running time: polynomial in |I| and ε^{-1}

Requirements: If the oracle is an FPRAS, A must be an

FPRAS

Hard Problems

Hardest: #SAT AP-interreducible #SAT has no FPRAS unless NP = RP (Zuckermann, 1996)

Theorem (Dyer et al; 2003) #SAT is #P-complete with respect to AP-reductions

AP-interreducible with #SAT:

#IS (independent sets)

#MaxIS

Widom-Rowlingson configurations

#BIS

#Bipartite-Independent-Set (#BIS): Given a bipartite graph, find the number of its independent sets

$$= \#CSP(H_{bis})$$

#BIS and Friends

#BIS is not believed to have FPRAS or be #SAT AP-interreducible Many other problems are interreducible with #BIS #Downset: Given a poset, find the number of downsets in it

#1p1nSAT Given a CNF such that every clause has a positive and a negative literal, find the number of satisfying assignments #BeachConfigs

$$\#CSP(H_{bc})$$
 H_{bc} \bigcirc \bigcirc

More #BIS

Theorem (B., Hedayaty, 2010)

Let *A* be a relational structure. Then if it has both meet and join operations of a distributive lattice as polymorphisms then #CSP(*A*) is AP-reducible to #BIS.

Datalog

A Datalog program is a finite set of rules of the form

Let
$$H = (V,E)$$
 be a graph
$$T(x,y) : - E(x,y)$$
$$T(x,y) : - E(x,z), T(z,y)$$

A Datalog program is linear if each rule contains at most one auxiliary predicate in the body

Datalog

A fixed point of a Datalog program is a value of T(x,y) such that all the rules are satisfied

#FixedPoints(P): Given an instance *I* of Datalog program P, find the number of fixed points of P on *I*

Theorem (Dyer et al.; 2003)

A problem is reducible to #BIS if and only if it is AP-interreducible with #FixedPoints(P) for some Datalog program P.

Boolean Approximation

Theorem (Dyer, Goldberg, Jerrum, 2007)

Let **A** be a relational structure over {0,1}. Then

- if A has a Mal'tsev polymorphism, then #CSP(A) is solvable in polynomial time;
- otherwise, if it has both conjunction and disjunction as polymorphisms then #CSP(A) is as hard as #BIS;
- otherwise it is hard.

Between FPRAS and #BIS 1

Theorem (Bordewich; 2010)

If FPRAS $<_{AP}$ #BIS $<_{AP}$ #P then there is an infinite hierarchy of classes not AP-reducible to each other.

Theorem

If H is a reflexive oriented graph then #CSP(H) is #BIS-hard.

Between FPRAS and #BIS 2

Theorem (Goldberg, Kelk, Paterson; 2004)
If there is an approximate sampler for *H*-colorings (*H* is a `nontrivial' undirected graph), then there is a sampler for BIS.

Since BIS is self-reducible

Corollary

For an undirected graph H, #CSP(H) is either in FPRAS or is #BIS-hard.

Beyond Trichotomy

#Bipartite 3-Colorability =
$$\#CSP\begin{pmatrix} a & a & b & b & c & c \\ 1 & 2 & 0 & 2 & 0 & 1 \end{pmatrix}$$

Not believed to be #BIS-easy or #P-hard

$$\mathsf{FPRAS} \leq_{\mathsf{AP}} \mathsf{\#BIS} \leq_{\mathsf{AP}} \mathsf{\#B3\text{-}COL} \leq_{\mathsf{AP}} \mathsf{\#B5\text{-}COL} \leq_{\mathsf{AP}} \ldots \leq_{\mathsf{AP}} \mathsf{\#SAT}$$

Counting to Optimization

Observation

$$\mathsf{VCSP}(\Gamma) \leq_{\mathsf{AP}} \!\! \# \mathsf{CSP}(\Gamma)$$

Take I an instance of VCSP(Γ)

Let I^k be the instance obtained by repeating all functions k times.

Then
$$Z(I^k) = \sum_{W \text{ a possible weight of a solution}} n_W W^k$$

Choose k such that the maximal W dominates, k = poly(I)Output $\frac{Z(I^{k+1})}{Z(I^k)}$

Classifications for Weighted #CSP

For any set Γ of functions $f: D^n \to \mathbb{R}$ we want to determine the complexity of $\#\mathsf{CSP}(\Gamma)$

Computable reals: There is a TM that given n computes the fist n bits of a in time poly(n)

Theorem (Yamakami; 2010)

Let Γ be a set of functions $f : \{0,1\}^n \to \mathbb{C}$ that contains all unary functions. Then $\#\mathsf{CSP}(\Gamma)$ is either FPRAS, or $\#\mathsf{BIS}$, or $\#\mathsf{SAT}$ -hard.

For a Γ , what functions f can be added to Γ so that $\# CSP(\Gamma \cup \{f\}) \leq {}_{AP}\# CSP(\Gamma)$?

- Multiplying by a constant function: $f \in \Gamma$ then $\# \mathsf{CSP}(\Gamma \cup \{\alpha : f\}) \leq \mathsf{AP} \# \mathsf{CSP}(\Gamma)$

- Product: $f,g \in \Gamma$ then $\# CSP(\Gamma \cup \{f \cdot g\}) \leq_{AP} \# CSP(\Gamma)$

- Summation: $f(x_1,...,x_n,y) \in \Gamma$ and

$$g(x_1,...,x_n) = \sum_{y \in D} f(x_1,...,x_n,y)$$

then $\#CSP(\Gamma \cup \{g\}) \leq_{AP} \#CSP(\Gamma)$

- Denote by $[\Gamma]$ the set of all functions obtained from Γ using the above operations;

Call a sequence of such operations a pps-formula

- Limits: A function f is a limit of functions from Γ if
 - f is computable
 - for any ε > 0 there is $f_{\mathcal{E}}$ such that $\|f f_{\mathcal{E}}\|_{\infty} < \varepsilon$
 - there is a TM, poly time in ε^{-1} that computes pps-

formulas for $f_{\mathcal{E}}$

Then $\#CSP(\Gamma \cup \{f\}) \leq_{AP} \#CSP(\Gamma)$

A set of functions closed under multiplication by a constant, products, summation, and limits is said to be an ω -clone

The ω -clone generated by a set of functions Γ is denoted $\langle \Gamma \rangle$

Theorem (B., Dyer, Goldberg, Jerrum; 2011)

If $\Gamma' \subseteq \langle \Gamma \rangle$ is finite then $\#\text{CSP}(\Gamma') \leq_{\mathsf{AP}} \#\text{CSP}(\Gamma)$

Log Supermodular Functions

A function $f: \{0,1\}^n \to \mathbb{R}$ is said to be log supermodular if for any $\vec{x}, \vec{y} \in \{0,1\}^n$ $f(\vec{x}) \cdot f(\vec{y}) \le f(\vec{x} \land \vec{y}) \cdot f(\vec{x} \lor \vec{y})$

Lemma

LSM is an ω-clone

For any `nontrivial' function $f \in LSM$, $H_{ds} \in \langle f \rangle$ Question 1: Does H_{ds} (+ some unary functions maybe) generate LSM?

Question 2: Any 'morphisms' for ω -clones?

Log Supermodular Functions

Theorem (B., Dyer, Goldberg, Jerrum; 2011)

Let Γ be a set of functions $f:\{0,1\}^n \to \mathbb{R}$ containing all nonnegative unary functions. Then either Γ is LSM or $\#CSP(\Gamma)$ is #P-complete

Corollary

Let Γ be a set of functions as above. Then either $\#\text{CSP}(\Gamma)$ is in FPRAS, or it is #BIS-hard or it is #P-complete

Thank you!