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Constraint Satisfaction

Let [T be a set of relations
#CSP(I"):
Instance: (V,C).

Objective: How many solutions does (V,C) have?

Let B be arelational structure
#CSP(B):
Instance: A relational structure A of the same type as B.
Objective: How many homomorphisms from A to B
are there?
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Counting Homomorphisms

#k-Coloring:
Instance: A graph G.

Objective: How many homomorphisms from G to
Ky are there?

LA B
—_
G K\

More general: Let H be a (di)graph #H-Coloring = #CSP(H)
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Counting Homomorphisms

#Independent Set:
Instance: A agraph G.

Objective: How many homomorphisms from G to
His are there?

#?
—
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Examples: #SAT, Linear Equations

#3-SAT: =#CSP( ¢3)
Instance: A propositional formula @=C,L...L.C, in 3-CNF.

Objective: How many satisfying assignments are there?

fiLinear Equations: =#CSP(F)
Instance: A system of linear equations

A X t... Xy = Dby

anX +...+a, X, =b,

.

Objective: How many solutions are there?
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Counting Problems: Fourier Coefficients

Let f:{01}" - {01 be a Boolean operation and

Fourier coefficient f(S) is given by
R F (X X) y Xig Tt
f(9=7 XD Ul
Xl,...,XnD{O,l}n

Observe that computing f(S) reduces to counting the zeroes of
FOXL- o Xn) + 2, Fe X
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Weighted #CSP

[ is a set of functions f: B — R (natural, real, complex)
Instance of #CSP(I"): (V,C), C is aset of constraints’ f ()

Given an instance | = (V,C) the weight of a mapping
0.V - B is computed as
wo) =[] f(a@)

f (U)OC
Then

Z(1)= > w(o)

oV - B
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Spin Systems

i 3 A particle can have one of the two spins
# # Two particles interact iff they
have the same spin

w A system of interacting particles form a graph
' 7 with edge weights y. > -1, a spin system
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Potts Model

‘EV A configuration of the spin system S is an
' assignment of spins o: S - {L,R}
Energy of the systemis =+ |‘| e=(u.v) anedge A+ yo(o(u) =a(Vv))

The probability the system IS in configuration o equals

1 1 — 1 i "
Z(T T (J)j where Z=) - o) S the partition
function, and T is temperature (Gibbs distribution)

ZPOttS = ZU |_| e=(u,v) anedge (1+ Ve(a(u) = J(V))
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Potts Model (cntd)

Thus Potts model is equivalent to #CSP(I") where I contains
all binary functions of the form

1+y 1

( 1 1+y)’ yUR
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Exact Counting: CSP

Theorem (B.; 2008)
Forany I the problem #CSP(I") is either polynomial time
solvable, or #P-complete

Theorem (Dyer, Richerby.; 2010)
Given I, the problem of deciding if #CSP(I") is poly time
or notis in NP.
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Exact Counting: Weighted CSP

Corollary (B.; 2008)

Forany I of non-negative rational valued functions the
problem #CSP(I') is either polynomial time solvable, or #P-
complete

Theorem (Cai, Chen; 2010)
For any " of non-negative real valued functions the problem
#CSP(I") is either poly time solvable, or #P-complete

Theorem (B.,Dyer,Goldberg, et al.; 2009)
Forany I of functions f: {0,1} ¥ — Q the problem

#CSP(I") is either polynomial time solvable, or #P-complete
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Approximation

Relative error:

Prle¢z(1)<s A(l)<efZ(1)] = 3/4

An FPRAS: given | and €, output A(l) satisfying the
inequality above in time polynomial in |I| and &7
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Sampling

Given an instance of CSP and a probability distribution on its
solutions, output a solution according to the distribution

- output a random 3-coloring

- output an independent set with probability proportional to its
size

An approximate sampler: given I, distribution 77y and €,
outputs o according to probability distribution «; such that the
statistical distance between «; and 7, isless than &, an runs
in time polynomial in |I| and &%
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Counting and Sampling

Theorem (Jerrum,Valiant,Vazirani; 1986)
If #CSP(I") is self-reducible then an FPRAS exists iff an
approximate sampler exists

_et | be an instance. CSP is self reducible if we can fix value of
a variable.
If we can count, choose a variable v, and let Ny be the number
of solutions with v = d. Choose value of v according to
distribution Ng,d LD, substitute, and recurse.

- Ng
If we can sample, estimate the probability py=g = AI
Substitute any value with nonzero probablllty, and recurse.

The answeris py,=q, [Pv,=d, [---[ Py, =d,
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Easy Problems

Problems that can be solved exactly are easy
There are other easy problems

/\

Other easy problems from Potts model, solved using Markov

chains (see Jerrumetal.)
Also #Match and #DNF
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AP-Reduction

An AP-reduction from P to P is a randomized algorithm A
solving P using an oracle for P'.

Input: (1,€), | aninstance of P
Oracle call:  (3,8), o ‘< poly(Jl],e™)
Running time:  polynomialin |I| and &7

Requirements: If the oracle is an FPRAS, A must be an
FPRAS
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Hard Problems

Hardest: #SAT AP-interreducible
#SAT has no FPRAS unless NP =RP (Zuckermann, 1996)

Theorem (Dyer et al; 2003)
#SAT is #P-complete with respect to AP-reductions

AP-interreducible with #SAT:
#|S (independent sets)

#MaxIS
Widom-Rowlingson configurations



#BIS

#Bipartite-Independent-Set (#BIS): Given a bipartite graph,

find the number of its independent sets

= #CSP(H., )

#

?

bis
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#BIS and Friends

#BIS is not believed to have FPRAS or be #SAT AP-interreducible
Many other problems are interreducible with #BIS
#Downset. Given a poset, find the number of downsets in it

#CSP(H,,) i Has

#1p1nSAT  Given a CNF such that every clause has a positive
and a negative literal, find the number of satisfying assignments
#BeachConfigs

1Py Hy, () () O O
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More #BIS

Theorem (B., Hedayaty, 2010)
Let A be a relational structure. Then if it has both meet

and join operations of a distributive lattice as
polymorphisms then #CSP(A) is AP-reducible to #BIS.
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Datalog

A Datalog program is a finite set of rules of the form

head bod
ea\ ~ A*\  ° y
T(X) =S (Y1) S (V1)
T— S
relational symbols
Let H=(V,E) beagraph  [T(x,y) := E(x,Y)
T(x,y) = E(X2),T(zY)

A Datalog program is linear if each rule contains at most one
auxiliary predicate in the body
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Datalog

A fixed point of a Datalog program is a value of T(X,y) such
that all the rules are satisfied

#FixedPoints(P): Given aninstance | of Datalog program P,
find the number of fixed points of P on |

Theorem (Dyer et al.; 2003)

A problem is reducible to #BIS if and only if it is
AP-interreducible with #FixedPoints(P) for some Datalog
program P.
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Boolean Approximation

Theorem (Dyer,Goldberg,Jerrum, 2007)
Let A be a relational structure over {0,1}. Then
- If A has a Mal'tsev polymorphism, then #CSP(A) is
solvable in polynomial time;
- otherwise, if it has both conjunction and disjunction as
polymorphisms then #CSP(A) is as hard as #BIS;

- otherwise it is hard.
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Between FPRAS and #BIS 1

Theorem (Bordewich; 2010)
If FPRAS <5p#BIS < p #P then there is an infinite
hierarchy of classes not AP-reducible to each other.

Theorem
If H is a reflexive oriented graph then #CSP(H)
Is #BIS-hard.
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Between FPRAS and #BIS 2

Theorem (Goldberg,Kelk,Paterson; 2004)
If there is an approximate sampler for H-colorings (H is a
‘nontrivial’ undirected graph), then there is a sampler for BIS.

Since BIS is self-reducible

Corollary
For an undirected graph H, #CSP(H) is either in FPRAS
oris #BIS-hard.
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Beyond Trichotomy

o o aabbcc
#Bipartite 3-Colorability = #CSP( 12020 1)

Not believed to be #BIS-easy
or #P-hard
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Counting to Optimization

Observation
VCSP(IM) <,p#CSP(I")

Take | aninstance of VCSP(I')

Let 1% be the instance obtained by repeating all functions k
times.

Then z(1¥) = Y WX

W a possible weight of a solution

Choose k suchkthat the maximal W dominates, k = poly(l)
Output  Z(l -
Z(1%)
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Classifications for Weighted #CSP

For any set " of functions f: D" — R we want to determine
the complexity of #CSP(I")

Computable reals: Thereis a TM that given n computes the
fist n bits of a intime poly(n)

Theorem (Yamakami; 2010)
Let T be a set of functions f:{01}" — C that contains
all unary functions. Then #CSP(I") is either FPRAS, or

#BIS, or #SAT-hard.
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Reductions and Constructions

Fora ", what functions f can be added to I so that
#CSP(I" [ {f}) < Ap#CSP(I") ?

- Multiplying by a constant function:
fOr then #CSP(I U {ad}) < Ap#CSP(I)
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Reductions and Constructions 2

- Product: f,gUI then #CSP(I U {fQ}) Sfa\p #CSP(I)

g —

- Summation: f(xq,..., %4, y)OI and

then #CSP(I" U {g}) < Ap#CSP(I')

T —
'QEE' &"J
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Reductions and Constructions 3

- Denote by [I'] the set of all functions obtained from I
using the above operations;
Call a sequence of such operations a pps-formula
- Limits: Afunction f is a limit of functions from [ if
- f Is computable
- forany €>0 thereis Tz suchthat ||f - fs|le<&
- thereis a TM, poly time in £7* that computes pps-
formulas for f
Then #CSP(I" O {f}) <,p #CSP(I")
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Reductions and Constructions 4

A set of functions closed under multiplication by a constant,
products, summation, and limits is said to be an w-clone

The wrclone generated by a set of functions I is
denoted (I")

Theorem (B.,Dyer,Goldberg,Jerrum; 2011)
If " 0() isfinite then #CSP(I"') <Ap#CSP(I")
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Log Supermodular Functions

Afunction f:{01}" - R is said to be log supermodular if for

yO{oR}"
any X,yU{01} f(R)IF(Y)< F(RCYIF(XCY)

Lemma
LSM is an w-clone

For any nontrivial’ function f LJLSM, Hgg LK)
Question 1: Does Hgs (+ some unary functions maybe)

generate LSM?
Question 2: Any ‘morphisms’ for -clones?
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Log Supermodular Functions

Theorem (B.,Dyer,Goldberg,Jerrum; 2011)
Let I be a set of functions f:{01}" — R containing

all nonnegative unary functions. Then either I is LSM
or #CSP(I') is #P-complete

Corollary

Let [ be a set of functions as above. Then either
#CSP(') is in FPRAS, or itis #BIS-hard or itis
#P-complete




Thank you!



