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Contributions

IPart 1: Mean-Variance efficient payoffs
• Optimal payoffs when you only care about mean and variance
• Payoffs with maximal possible Sharpe ratio
• Application to fraud detection

I Part 2: Constrained Mean-Variance efficient payoffs
• Drawbacks of traditional mean-variance efficient payoffs
• Optimal payoffs in presence of a random benchmark
• Sharpening the maximal possible Sharpe ratios
• Application to improved fraud detection
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Financial Market

I The market (Ω,z,P) is arbitrage-free.
I There is a risk-free account earning r > 0.
I Consider a strategy with payoff XT at time T > 0.
I There exists Q so that its initial price writes as

c(XT ) = e−rTEQ [XT ] ,

I Equivalently, there exists a stochastic discount factor ξT such
that

c(XT ) = EP [ξTXT ] .

I Assume ξT is continuously distributed and var(ξT ) <∞.
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Mean Variance Optimization

I A Mean-Variance efficient problem:

(P1)

max
XT

E [XT ]

subject to

{
E [ξTXT ] = W0

var[XT ] = s2

Proposition (Mean-variance efficient portfolios)

Let W0 > 0 denote the initial wealth and assume the investor aims
for a strategy that maximizes the expected return for a given
variance s2 for s > 0. The a.s. unique solution to (P1) writes as

X ?
T = a− bξT ,

where a =
(
W0 + bE[ξ2

T ]
)

erT > 0, b = s√
var(ξT )

> 0.
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Proof

Choose a and b > 0 such that X ?
T = a− bξT satisfies the

constraints var(X ?
T ) = s2 and c(X ?

T ) = W0.

Observe that corr(X ?
T , ξT ) = −1 and X ?

T is thus the unique payoff
that is perfectly negatively correlated with ξT while satisfying the
variance and cost constraints.

Consider any other strategy XT which also verifies these
constraints (but is not negatively linear in ξT ). We find that

corr(XT , ξT ) =
E[ξTXT ]− E[ξT ]E[XT ]√

var(ξT )
√

var(XT )
> −1 = corr(X ?

T , ξT ).

Since var(XT ) = s2 = var(X ?
T ) and E[ξTXT ] = W0 = E[ξTX ?

T ] it
follows that

E[ξT ]E[XT ] < E[ξT ]E[X ?
T ],

which shows that X ?
T maximizes the expectation and thus solves

Problem (P1).
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Maximum Sharpe Ratio

I The Sharpe Ratio (SR) of a payoff XT (terminal wealth at T
when investing W0 at t = 0) is defined as

SR(XT ) =
E[XT ]−W0erT

std(XT )
,

⇒ All mean-variance efficient portfolios X ?
T have the same

maximal Sharpe Ratio (SR?) given by

SR? := SR(X ?
T ) = erT std(ξT ),

I For all portfolios XT we have

SR(XT ) 6 erT std(ξT ),

I This can be used to show Madoff’s investment strategy was a
fraud (Bernard & Boyle (2007)).
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Example in a Black-Scholes market

I There is a risk-free rate r > 0 and a risky asset with price
process,

dSt

St
= µdt + σdWt ,

where Wt is a standard Brownian motion, µ is the drift and σ is
the volatility.
I The state-price density ξT is given as

ξT = e−rT e−θWT− 1
2
θ2T = αS−βT ,

for known coefficients α, β > 0 (assume µ > r and θ = µ−r
σ ).

I The maximal Sharpe ratio is given by

SR? =
√

eθ2T − 1.

see Goetzmann et al. (2007) for another proof.
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General Market

I Non-parametric estimation of the upper bound

erT std(ξT )

I Assume ξT = f (ST ) (where f is typically decreasing and ST is
the risky asset) and that all European call options on the
underlying ST maturing at T > 0 are traded. Let C (K )
denote the price of a call option on ST with strike K . Then,
the Sharpe ratio SR(XT ) of any admissible strategy with
payoff XT satisfies

SR(XT ) 6

√
e2rT

∫ +∞

0
f (K )

∂2C (K )

∂K 2
dK − 1.

I use for instance Äıt-Sahalia and Lo (2001).
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Improving Fraud Detection by Adding Constraints

I Detect fraud based on mean and variance only

I Ignored so far additional information available in the market.

I How to take into account the dependence features between
the investment strategy and the financial market?

I Include correlations of the fund with market indices to refine
fraud detection.

Ex: the so-called “market-neutral” strategy is typically designed to
have very low correlation with market indices ⇒ it reduces the
maximum possible Sharpe ratio!

Carole Bernard Optimal Portfolio 9/33



Introduction M-V Efficiency Fraud Correlation GOP Fraud Copula Fraud Conclusion

Improving Investment by Adding Constraints

I Optimal strategies X ∗T = a− bξT give their lowest outcomes
when ξT is high. Bounded gains but unlimited losses!
I Highest state-prices ξT (ω) correspond to states ω of bad
economic conditions as these are more expensive to insure:

• E.g. in a Black-Scholes market: ξT = αS−βT , α, β > 0.

• Also, E[X ∗T |ξT > c] < E[YT |ξT > c], for any other strategy
YT with the same distribution as X ∗T showing that X ∗T does
not provide protection against crisis situations (event
“ξT > c”).

• in a Black-Scholes market: X ∗T = −∞ when ST = 0.

I To cope with this observation: we impose the strategy to have
some desired dependence with ξT , or more generally with a
benchmark BT .
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Proposition (Optimal portfolio with a correlation constraint)

Let BT be a benchmark, linearly independent from ξT with
0 < var(BT ) < +∞. Let |ρ| < 1 and s > 0. A solution to the
following mean-variance optimization problem

(P2) max
var(XT ) = s2

c(XT ) = W0,

corr(XT ,BT ) = ρ

E[XT ] (1)

is given by X ?
T = a− b(ξT − cBT ), where a, b and c are uniquely

determined by the set of equations

ρ = corr(cBT − ξT ,BT )

s = b
√

var(ξT − cBT )

W0 = ae−rT − b(E [ξ2
T ]− cE [ξTBT ]).
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Proof

Observe that f (c) := corr(cBT − ξT ,BT ) verifies lim
c→−∞

f (c) = −1, lim
c→+∞

f (c) = 1 and f ′(c) > 0 so that ρ = f (c) has a

unique solution. Take X ?
T = a− b(ξT − cBT ) linear in ξT − cBT

and satisfying all constraints and b > 0.
Consider any other XT that satisfies the constraints and which is
non-linear in ξT − cBT , then

corr(XT , ξT − cBT ) =
E[XT (ξT − cBT )]− E[ξT − cBT ]E[XT ]

std(ξT − cBT )std(XT )

> −1 = corr(X ?
T , ξT − cBT )

Since both XT and X ?
T satisfy the constraints we have that

std(XT ) = std(X ?
T ), E[XT ξT ] = E[X ?

T ξT ] and
cov(XT ,BT ) =cov(X ?

T ,BT ). Hence the inequality holds true if and
only if E[X ?

T ] > E[XT ]. �
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S?T : Growth Optimal Portfolio (GOP)

• The Growth Optimal Portfolio (GOP) maximizes expected
logarithmic utility from terminal wealth.

• It has the property that it almost surely accumulates more
wealth than any other strictly positive portfolios after a
sufficiently long time.

• Under general assumptions on the market, the GOP is a
diversified portfolio (proxy: a world stock index).

• The GOP can be used as numéraire to price under P, so that
ξT = 1

S?T

c(XT ) = EP [ξTXT ] = EP

[
XT

S?T

]
where S?0 = 1.

• Details in Platen & Heath (2006).
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Example when BT = S?T/2

The optimal solution is of the form X ?
T = a− b(ξT − cS?T/2),

where c is computed from the equation
ρ = corr(cS?T/2 − ξT , S

?
T/2), b is derived from b = s√

var(ξT−cS?T/2
)

and a = W0erT + b
(

e−2rT+θ2T − cE[ξTS?T/2]
)

erT .

Optimal payoffs as a function of the GOP for a given correlation
level ρ = −0.5 with the benchmark S?T/2 using the following
parameters: W0 = 100, r = 0.05, µ = 0.07, σ = 0.2, T = 1,
S0 = 100, s = 10.
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Example when BT = S?T

An optimal solution is of the form X ?
T = a− b(ξT − cS?T ), where c

is computed from the equation ρ = corr(cS?T − ξT , S?T ), b is
derived from b = s√

var(ξT−cS?T )
and

a = W0erT + b
(

e−2rT+θ2T − c
)

erT .

Optimal payoffs as a function of the GOP for different values of
the correlation ρ with the benchmark S?T using the following
parameters: W0 = 100, r = 0.05, µ = 0.07, σ = 0.2, T = 1,
θ = (µ− r)/σ, S0 = 100, s = 10.
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Fraud Detection

Proposition (Constrained Maximal Sharpe Ratio)

All mean-variance efficient portfolios X ?
T which satisfy the

additional constraint corr(X ?
T ,BT ) = ρ with a benchmark asset BT

(that is not linearly dependent to ξT ) have the same maximal
Sharpe ratio SR?

ρ given by

SR?
ρ = erT

cov(ξT , ξT − cBT )

std(ξT − cBT )
6 SR? = erT std(ξT ). (2)

where SR? is the unconstrained Sharpe ratio.
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Illustration in the Black-Scholes model

Maximum Sharpe ratio SR?
ρ for different values of the correlation ρ

when the benchmark is BT = S?T . We use the following
parameters: W0 = 100, r = 0.05, µ = 0.07, σ = 0.2, T = 1,
S0 = 100.
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M-V Optimization with a Benchmark

I Dependence (interaction) between XT and BT cannot be fully
reflected by correlation.
I A useful device to do so is the copula. Sklar’s theorem shows
that the joint distribution of (BT ,XT ) can be decomposed as

P(BT 6 y ,XT 6 x) = C (FBT
(y) ,FXT

(x)),

where C is the joint distribution (also called the copula) for a pair
of uniform random variables over (0, 1). Hence, the copula C fully
describes the interaction between the strategy’s payoff XT and the
benchmark BT .
I Constrained Mean-Variance efficient problem:

(P3)

max
XT

E [XT ]

subject to


E [ξTXT ] = W0

var(XT ) = s2

C := Copula(XT ,BT )
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Proposition (Optimal portfolio when BT = ξT )

Let W0 denote the initial wealth and let BT = ξT . Define the
variable At as

At =
(

cFξT (ξT )

)−1 [
jFξT (ξT )(Fξt (ξt))

]
,

where the functions ju(v) and cu(v) are defined as the first partial
derivative for (u, v)→ J(u, v) and (u, v)→ C (u, v) respectively,
and where J denotes the copula for the random pair (ξT , ξt).
Assume that E[ξT |At ] is decreasing in At . For s > 0, a solution to
(P3) is given by X ?

T ,

X ?
T = a− bE[ξT |At ], (3)

where a = (W0 + bE [ξTE[ξT |At ]]) erT , b = s
std(E[ξT |At ])

.
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Idea of the Proof

I C a copula between 2 uniform U and V over [0, 1]

I cu(v) := ∂
∂uC (u, v) can be interpreted as a conditional

probability:
cu(v) = P(V 6 v |U = u). (4)

I cU(V ) is a uniform variable that depends on U and V and
which is independent of U.

I If U and T are independent uniform random variables then
c−1
U (T ) is a uniform variable (depending on U and T ) that

has copula C with U.

I The following variable is a Uniform over [0, 1] with the right
dependence with ξT for 0 < t < T

At =
(

c
FξT

(ξT )

)−1 [
j
FξT

(ξT )
(Fξt (ξt))

]
,
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Idea of the Proof

I The optimal XT , if it exists, can always be written as
XT = f (U) for some f increasing in some standard uniform U
having the right copula with BT .
I At is a good candidate for U.
I Choose a and b > 0 such that X ?

T = a− bE[ξT |At ] satisfies the
constraints of Problem (P3) that is a and b verify var(X ?

T ) = s2

and c(X ?
T ) = W0.

I X ?
T has the right copula with ξT (because of the monotonicity

constraint).
I corr(X ?

T ,E[ξT |At ]) = −1 and X ?
T is thus the unique payoff that

is perfectly negatively correlated with E[ξT |At ] and also satisfying
all the constraints of Problem (P3).
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I Consider next any other strategy XT which also verifies these
constraints. We find that

corr(XT ,E[ξT |At ]) =
E[E[ξT |At ]XT ]− E[ξT ]E[XT ]√

var(E[ξT |At ])
√

var(XT )

> −1 = corr(X ?
T ,E[ξT |At ]).

I Since XT satisfies the constraints of (P3), we have that
var(XT ) = s2 = var(X ?

T ) and
E[ξTXT ] = E[E[ξT |At ]XT ] = W0 = E[ξTX ?

T ]. Therefore

E[ξT ]E[XT ] < E[ξT ]E[X ?
T ],

which shows that X ?
T maximizes the expectation.
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Proposition (Constrained Mean-Variance Efficiency)

Let s > 0. Assume that the benchmark BT has a joint density with

ξT . Define A as A =
(

c
FBT

(BT )

)−1 [
j
FBT

(BT )
(1− FξT (ξT ))

]
, where

the functions ju(v) and cu(v) are defined as the first partial
derivative for (u, v)→ J(u, v) and (u, v)→ C (u, v) respectively,
and where J denotes the copula for the random pair (BT , ξT ). If
E[ξT |A] is decreasing in A, then the solution to the problem

max
var(XT ) = s2

c(XT ) = W0

C : copula between XT and BT

E[XT ] (5)

is uniquely given as X ?
T = a− bE[ξT |A] where a, b are

non-negative and can be computed explicitly.
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I In the paper we apply this to Black-Scholes markets.
I All portfolios with copula C with BT must now have a Sharpe
Ratio bounded by

erT std[E[ξT |A]],(
6 erT std[ξT ]

)
.

I In the paper we use these results to develop improved fraud
detection schemes.
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Proposition (Case BT = S?t )

Let W0 denote the initial wealth and let BT = S?t (0 < t < T ) be

the benchmark. Assume that ρ > −
√

1− t
T . Then, the solution

to (P3) when the copula C is the Gaussian copula with correlation
ρ, CGauss

ρ is given by X ?
T ,

X ?
T = a− bG c

T . (6)

Here GT is a weighted average of the benchmark and the GOP. It
is given as GT = (S?t )αS?T with α,

α = ρ

√
T − t

t

1

1− ρ2
− 1.

Furthermore
a = W0erT + berTE[ξTG c

T ], b = s√
var(G c

T )
, c = − αt+T

(α+1)2t+(T−t)
.
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Illustration

I Maximum Sharpe ratio SR?
ρ,G for different values of the

correlation ρ when the benchmark is BT = S?t . We use the
following parameters: t = 1/3,

√
t/T = 0.577,

−
√

1− t/T = −0.816, W0 = 100, r = 0.05, µ = 0.07, σ = 0.2,
T = 1, S0 = 100.
I Observe that the constrained case reduces to the unconstrained
maximum Sharpe ratio when the correlation in the Gaussian copula
is ρ =

√
t/T . The reason is that the copula between the

unconstrained optimum and S?t is the Gaussian copula with
correlation ρ =

√
t/T . The constraint is thus redundant in that

case.

Carole Bernard Optimal Portfolio 29/33



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Correlation coefficient  ρ

M
ax

im
u

m
 S

h
ar

p
e 

R
at

io
 o

f 
C

o
n

st
ra

in
ed

 S
tr

at
eg

y

 

 
Constrained case
Unconstrained case

ρ = − (1 − t/T)1/2 ρ=(t/T)1/2



Introduction M-V Efficiency Fraud Correlation GOP Fraud Copula Fraud Conclusion

Conclusions

I Mean-variance efficient portfolios when there are no trading
constraints

I Mean-variance efficiency with a stochastic benchmark (linked
to the market) as a reference portfolio (given correlation or
copula with a stochastic benchmark).

I Improved upper bounds on Sharpe ratios useful for example
for fraud detection. For example it is shown that under some
conditions it is not possible for investment funds to display
negative correlation with the financial market and to have a
positive Sharpe ratio.

I Related problems can be solved: case of multiple
benchmarks...
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Related problems

I Able to solve the partial hedging problem:

min
XT

E
[
(BT − XT )2

]
subject to

{
E [ξTBT ] = W0

E [ξTXT ] = W (W 6W0)

I Able to deal with constrained “cost-efficiency” problems (extend
Bernard, Boyle, Vanduffel (2011))

min
XT

E [ξTXT ]

subject to

{
XT ∼ F
corr(XT ,BT ) = ρ

,

I Multiple constraints can be dealt with.
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