
Weak Reflection Principle and Static Hedging of Barrier
Options

Sergey Nadtochiy

Department of Mathematics
University of Michigan

Apr 2013

Fields Quantitative Finance Seminar

Fields Institute, Toronto

Sergey Nadtochiy (University of Michigan) Weak reflection principle Fields Institute 1 / 23



Static Hedging of Barrier Options

Static vs Dynamic

In Finance, hedging is a process of offsetting the risks arising from
holding a financial instrument by trading (buying and selling) other
instruments.

When the market is complete, the price of a derivative contract can
always be replicated by dynamically trading the underlying asset S .

Such dynamic hedging strategies have certain drawbacks, in
particular, due to the presence of transaction costs.

Whether the market is complete or not, there sometimes exists a
static portfolio of simpler (liquid) derivatives, such that the value of
the portfolio matches the value of the target (exotic) derivative
at any time before the barrier is hit.

Sergey Nadtochiy (University of Michigan) Weak reflection principle Fields Institute 2 / 23



Static Hedging of Barrier Options

Barrier Options: Up-and-Out Put

Consider the problem of

static hedging of

barrier options.

For the sake of transparency, we focus on the Up-and-Out Put (UOP)
option:

An UOP written on the underlying process S is issued with a maturity
date T > 0, a strike price K > 0, and a flat upper barrier U > K .

At expiry, it pays off:

I{supt∈[0,T ] St<U} · (K − ST )+
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Static Hedging of Barrier Options

Definition of Static Hedge

When it exists, a static hedging strategy of a barrier option is characterized
by a function

G : [0,∞)→ R,

such that a European option with payoff G (ST ) at T has the same value
as the target barrier option up to and including the time when the barrier
is hit.

One can, then, hedge the barrier option by

1 opening a long position in a European option with payoff G and

2 trading it at zero cost for the corresponding ”vanilla” option when/if
the underlying hits the barrier.
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Static Hedging of Barrier Options

Example: Static Hedge in Black’s Model

Consider the Black’s model where the risk-neutral process for the
underlying S is given by a geometric Brownian motion:

dSt = StσdWt ,

with S0 < U and σ ∈ R.

Carr-Bowie (1994) show that static hedge of an UOP in such model is given
by:

G (S) = (K − S)+ − K

U

(
S − U2

K

)+

Hence an UOP can be replicated exactly by being long one put struck at K

and short K
U calls struck at U2

K .

The exact same hedge works in a generalization of the Black model where σ
is an unknown stochastic process independent of W .
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Static Hedging of Barrier Options

Static Hedge of an UOP in Black’s Model

G (S) = (K − S)+ − K

U

(
S − U2

K

)+

Figure : Static Hedge payoff (blue) and the boundary (red). K∗ = U2

K
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Static Hedging of Barrier Options

Related results

Explicit exact model-dependent static hedge

BS model: Bowie-Carr (1994).

Symmetric diffusion models: Carr-Ellis-Gupta (1998).

Time-homogeneous diffusion models: Carr-N. (2011), Gesell (2011).

Robust sub/superreplicating static strategies: Brown-Hobson-Rogers
(2001), Cox-Hobson-Ob lój (2008), Cox-Ob lój (2010),
Galichon-Henry-Labordère-Touzi-Ob lój-Spoida (to appear).

Robust static hedging with beliefs: N.-Ob lój (in progress). We use the
exact model-dependent static hedges as building blocks to construct sub-
and super replicating strategies that work in classes of models.

Optimization-based approach to find approximate static hedge: Sachs,
Maruhn, Giese, Sircar, Avelaneda .
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Static Hedging of Barrier Options Exact Static Hedging under Time-Homogeneous Diffusions

Exact static hedge in diffusion models

In Carr-N. (2011), we provide exact static hedging strategies for barrier options
in the following class of models.

Pricing of contingent claims is linear: it is done by taking expectations of
discounted payoffs under some pricing measure.

Interest rate r is constant.

Under the pricing measure, the underlying S follows a time-homogeneous
diffusion:

dSt = µ(St)dt + σ(St)dBt

We make some regularity assumptions on µ and σ. In particular, our results
hold for all models where σ(S)/S is bounded away from zero, and µ(S)/S
and σ(S)/S have limits at the boundary points, and are bounded along with
their first three derivatives.
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Static Hedging of Barrier Options Exact Static Hedging under Time-Homogeneous Diffusions

Static Hedge of an UOP

Figure : Static hedge payoff G (blue) and the barrier (red).

Function G has to be of the form G (S) = (K − S)+ − g(S), where:

g(S) = 0 for S < U,

and the price of a European option with payoff g is equal to the price of a
put with strike K and the same maturity, whenever the underlying hits the

barrier.
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Static Hedging of Barrier Options Exact Static Hedging under Time-Homogeneous Diffusions

”Mirror” Image

Find g , s.t. it has support in (U,∞) and

E [h (Sτ )| S0 = U] = E [g (Sτ )| S0 = U] , for all τ > 0

Figure : Price functions of the options with payoffs h (blue) and g (green), along
the barrier S = U (red)
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Weak Reflection Principle

Problem formulation

Consider a stochastic process X = (Xt)t≥0, started from zero: X0 = 0.

Introduce

Ω1 – the set of regular functions (e.g. continuous, with at most
exponential growth) with support in (−∞, 0);

Ω2 – the set of regular functions with support in (0,∞).

Problem: find a mapping R : Ω1 → Ω2, such that, for any f ∈ Ω1:

E [f (Xt)] = E [Rf (Xt)] ,

for all t ≥ 0.
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Weak Reflection Principle

Strong Reflection Principle

If there exists a mapping S : R→ R, which maps (−∞, 0) into (0,∞), and
such that the process X is symmetric with respect to this mapping:

Law(S(Xt), t ≥ 0) = Law(Xt , t ≥ 0),

then, the reflection R is easy to construct:

Rf = f ◦ S

For example, Brownian motion B is symmetric with respect to zero:

Law(−Bt)) = Law(Bt), ∀t ≥ 0,

and, therefore:
Rf (x) = f (−x)

What we call a Classical (Strong) Reflection Principle arises as a
combination of the continuity of B, its strong Markov property, and the
above symmetry.
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Weak Reflection Principle

Applications

The Strong Reflection Principle for Brownian motion is used

to compute the joint distribution of Brownian motion and its
running maximum:

P(BT ≤ K , max
t∈[0,T ]

Bt ≤ U)

or, more generally, solve the Static Hedging problem when the
underlying is a Brownian motion (or any process symmetric with
respect to the barrier).

It turns out that the Weak Reflection Principle is enough to solve the
above problems.

We show how to extend this principle to a large class of Markov processes,
which do not possess any strong symmetries!.
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Weak Reflection Principle

Weak Reflection Principle for time-homogeneous
diffusions

To simplify the resulting expression, we assume that µ ≡ 0.

dXt = σ(Xt)dBt

Then, the reflection mapping R is given by

Rh (x) =
2

πi

∫ ε+∞i

ε−∞i

zψ1 (x , z)

∂xψ1(0, z)− ∂xψ2(0, z)

∫ 0

−∞

ψ1 (s, z)

σ2(s)
h(s)ds dz ,

where the functions ψ1(x , z) and ψ2(x , z) are the fundamental solutions
of the associated Sturm-Liouville equation:

1

2
σ2 (x)ψxx (x , z) − z2ψ (x , z) = 0
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Weak Reflection Principle

Solution to the Static Hedging problem

(N.-Carr, 2011)

Recall that, in order to solve the static hedging problem, we only need to
compute the mirror image of the put payoff.

h(x) = (K − x)+

Thus, the Static Hedge of an UOP option (with barrier U and strike K < U)
is given by

G (x) = (K − x)+ − g(x),

where

g (x) =
1

πi

∫ ε+∞i

ε−∞i

ψ1 (x , z)ψ1(K , z)

ψ1
x(U, z)− ψ2

x(U, z)

dz

z
,
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Weak Reflection Principle Examples

Constant Elasticity of Variance: µ = 0, σ(S) = S1+β

Figure : The ”mirror image” g in the zero-drift CEV model with barrier U = 1.2
and strike K = 0.5: the case of β = −0.5, for small (left) and large (right) values
of the argument.
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Weak Reflection Principle Examples

Other CEV: Bachelier and Black-Scholes

Figure : The ”mirror image” g in the zero-drift CEV model with barrier U = 1.2
and strike K = 0.5: the cases of β = −1 (left) and β ≈ 0 (right).
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Weak Reflection Principle Examples

Computation and extensions

g (S) =
1

πi

∫ ε+∞i

ε−∞i

ψ1 (S , z)ψ1(K , z)

ψ1
S(U, z)− ψ2

S(U, z)

dz

z
,

If σ(S) is piece-wise constant, the fundamental solutions ψ1(S , z) and
ψ2(S , z) can be easily computed as linear combinations of exponentials,
on each sub-interval in S .

This family of models is sufficient for all practical purposes.

The proposed static hedge also succeeds in all models that arise by running
the time-homogeneous diffusion on an independent continuous stochastic
clock.

One can obtain a semi-robust extension of this static hedging strategy.
More precisely, a strategy that succeeds in all models, as long as the market
implied volatility stays within given bounds (beliefs about implied volatility
are fulfilled).
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Weak Reflection Principle Examples

Robust static hedge with beliefs on implied
volatility

Figure : Range of possible values of (beliefs on) implied volatility (blue), and the
extremal implied volatility produced by a diffusion model (green)
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Weak Reflection Principle Examples

Weak Reflection Principle for Lévy processes with
one-sided jumps

Note that, in principle, this method can be used any strong Markov
process which does not jump across the barrier.

The only problem is to establish the Weak Reflection of this process with
respect to the barrier.

In our ongoing work, we have developed the Weak Reflection principle for
Lévy processes with one-sided jumps. The solution takes a similar for, in
the sense that the reflection operator R is given as an integral transform,
with a kernel that can be computed through the characteristic exponent of
the Lévy process ψ. For example, the image of h(y) = 1{y≤K}, for K < 0, is
given by

Rh(y) =
1

2πi

∫
R2

eεy+iwy+iKz

z

(
ψ′(w)

ψ(w)− ψ(−iz)
− 1

w + iz

)
dzdw
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Weak Reflection Principle Examples

Beyond Finance

The Weak Reflection Principle allows to compute the joint distribution of a
time-homogeneous diffusion and its running maximum, through the
marginal distribution of the process itself:

P(XT ≤ K , max
t∈[0,T ]

Xt ≤ U) = E(gK ,U(XT )),

where gK ,U is the mirror image of function (K − .)+, with respect to the
barrier U.

The connection to PDE’s yields various applications in Physics and
Biology.
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Conclusion

Summary

I have presented a solution to the Static Hedging problem for barrier
options.

This solution provides exact, but model-dependent, hedge in all regular
enough time-homogeneous diffusion models.

In our ongoing work with J. Obloj, we develop the semi-robust hedges
based on the above results.

Static Hedging problem motivated the development of a new technique, the
Weak Reflection Principle.

We have developed the Weak Reflection principle to diffusion processes and
one-sided Lévy processes.
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Conclusion

Summary (cont’d)

The Weak Reflection Principle allows us to

control the expected value of a function of the process,

at any time when the process is at the barrier of a given domain,

by changing the function outside of this domain.

Applications include Finance, Physics, Biology, Computational Methods.

Further extensions:

Specific applications in Physics and Biology?

More general domains?

More general stochastic processes?
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Appendix

Non-existence result

Bardos-Douady-Fursikov (2004) treat this problem for a general
parabolic PDE, and prove the existence of approximate solutions
gε, such that

sup
t∈[0,T ]

∣∣∣uh(U, t)− ugε(U, t)
∣∣∣ < ε

They show that an exact solution doesn’t exist in general...

Their proof is not constructive - finding even an approximate
solution is left as a separate problem.

The example of non-existence relies heavily on the
time-dependence of the coefficients in the corresponding PDE!
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Appendix

Naive numerical approximation

Figure : Payoff function gε as a result of the naive least-square optimization
approach
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Appendix

Square root process revisited

Figure : 2. Function g , for β = −0.5, U = 1.2, K = 0.5

Notice that there is a constant K ∗ ≥ U, such that the support of g
is exactly [K ∗,∞].
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Appendix

Short-Maturity Behavior and Single-Strike Hedge

Key observation: when time-to-maturity is small, only the values of g
around K∗ matter!

Thus, for small maturities, the approximation of the payoff function g with a
scaled call payoff should perform well.

We have: ∫ U

K

dy

σ(y)
=

∫ K∗

U

dy

σ(y)
, η =

√
σ(K )

σ(K∗)
.

Using the above, we can construct the single-strike sub- and
superreplicating strategies: there exists δ > 0, such that, whenever
St = U,

[1− δ(T − t)] Pt(K )− ηCt(K∗) ≤ 0 ≤ [1 + δ(T − t)] Pt(K )− ηCt(K∗)
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Appendix

Function g : properties and numerical computation

There exists a constant K∗ ≥ U, such that the support of g is exactly
[K∗,∞].

Introduce the ”signed geodesic distance”:

Z (x) :=
√

2

∫ x

U

dy

σ(y)

Then K∗ is a solution of the equation

Z (K∗) + Z (K ) = 0

The function g is ”analytic with respect to the geodesic distance Z ” in
(K∗,∞):

g(x) =
∞∑
k=1

ck (Z (x)− Z (K∗))k ,

and the exists an algorithm for computing ck ’s.
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