

Jon Gregory

Quantitative Finance Seminar, Fields Institution, Toronto
6 February 2013





- In the period 1998 to 2007, CDOs increased exponentially in both volume and diversity
  - Prior to 2007, the CDO was seen as a successful financial innovation
- However, the global financial crisis was partly catalysed by an implosion in the CDO market and caused massive losses for:
  - Issuers (banks) through investments held, litigation, failed hedges, reputation
  - Investors, both in terms of default losses and those from forced liquidation
  - Third parties (e.g. rating agencies through loss of fees, reputation issues and litigation)
- An obvious question is therefore:
  - Is there something fundamentally wrong with the concept of a CDO?
  - Does it have economic value or is just a money making tool for investment bankers?

#### **Assumptions**

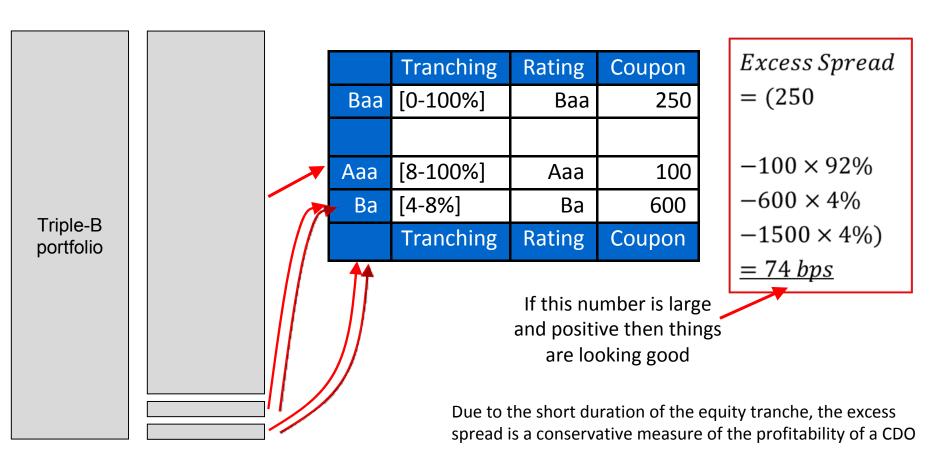


- This analysis will be based on a CDO under the following assumptions
  - Full capital structure (although this is not especially important)
  - Static portfolio (again particularly important as we care mainly about the initial portfolio)
  - Corporate credit risk (due to the richer data than for asset basked structures)
  - The ratings process used by ratings agencies for CDO structures during the period in question
- A CDO is broadly speaking
  - An investment at risk to a pre-defined range of losses on a certain portfolio
  - As such, the risk assessment requires an analysis of the multidimensional default distribution (which is quite complex)



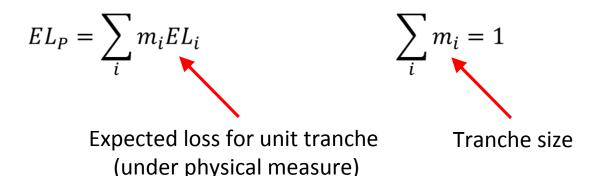
### **Example CDO**




| Class        | Amount | Tranching | Rating   | Funding  |  |
|--------------|--------|-----------|----------|----------|--|
| Super senior | 850    | [15-100%] | NR       | Unfunded |  |
| Class A      | 50     | [10-15%]  | Aaa/AAA  | Funded   |  |
| Class B      | 30     | [7-10%]   | Aa2/AA   | Funded   |  |
| Class C      | 30     | [4-7%]    | Baa2/BBB | Funded   |  |
| Class        | Amount | Tranching | Rating   | Funding  |  |



### **Example CDO Economics**




Very simple example (more rigorous one later)





- Suppose there is a continuum of underlying tranches (full capital structure)
  - Each tranche is denoted by i
  - The underlying portfolio is denoted by p
- Consider expected loss as the main quantitative characteristic of the tranche
  - Expected loss must be conserved across the structure





- Investors will demand a premium for the losses they take
  - Let us represent this as a multiplier  $\alpha$  which varies for the different tranches and original portfolio and therefore represents the risk aversion for a particular seniority
  - Investors will be paid  $\alpha_i m_i E L_i$
  - The CDO will "work" if

$$\alpha_p EL_P > \sum_i \alpha_i m_i EL_i$$

- This basically requires that it is possible to buy protection cheaper via the CDO tranches
   than it is on the underlying portfolio
- Note that the lpha will be determined via the coupon demanded on the various tranches by investors

### Risk aversion by seniority



#### • How do we represent $\alpha$ ?

- The primary consideration of investors was the rating of the underlying tranche
- In turn, the fundamental driver of ratings would be the expected loss of a tranche (or default probability in the case of Standard & Poor's)
- Hence we assume

$$\alpha_j = \left(\frac{a}{EL_j}\right)^b$$



- Risk-neutral investors, b = 0
- Risk aversion for a, b > 0
- More relative risk aversion for small expected losses





- What parameters are required for a CDO to work?
  - We require:

$$\alpha_p E L_P > \sum_i \alpha_i m_i E L_i$$
  $\alpha_j = \left(\frac{a}{E L_j}\right)^b$ 

Which becomes:

$$\left(\frac{a}{EL_p}\right)^b EL_P > \sum_i \left(\frac{a}{EL_i}\right)^b m_i EL_i$$

Simplifying to:

$$EL_P^{1-b} > \sum_i m_i EL_i^{1-b}$$

- Which is satisfied when b < 1



### Example calibration



- Hull, Predescu and White (2005)
  - Time period, December 1996 to July 2004
  - Merrill Lynch bond indices and Moody's data

|    |           |         |                    |            |               | L |
|----|-----------|---------|--------------------|------------|---------------|---|
| Γ  |           |         | -Best fit          | Actual     | Α             |   |
|    | 25        |         | best iii           | Actual     | Baa           |   |
|    | 25 _      |         |                    |            | Ba            |   |
| ha | 20 -      |         | a = 0.24, b = 0.47 |            |               |   |
|    |           | •       |                    |            |               |   |
|    | 415 -     | •       |                    |            |               |   |
|    | ਵੇਂ<br>10 | •       |                    |            |               |   |
|    |           |         |                    |            |               |   |
|    | 5 -       |         |                    |            |               |   |
|    | 0         |         |                    |            | ]             |   |
|    | 0 +       | I       | I                  |            | <sup>-1</sup> |   |
|    | 0.01      | % 0.10% | 1.00%              | 10.00% 100 | 0.00%         |   |
|    |           | ı       | Expected Loss (EL) | )          |               |   |
|    |           |         | ()                 | •          |               |   |
| 1  |           |         |                    |            |               |   |

|     | Default    |              |       |
|-----|------------|--------------|-------|
|     | Real world | Risk-neutral | Ratio |
| Aaa | 4          | 67           | 16.8  |
| Aa  | 6          | 78           | 13.0  |
| Α   | 13         | 128          | 9.8   |
| Baa | 47         | 138          | 5.1   |
| Ва  | 240        | 507          | 2.1   |
| В   | 749        | 902          | 1.2   |
|     | Default    |              |       |

Assume recovery rate of 40%

#### Back to a simple example



#### Rating assumptions

- Expected loss based
- Gaussian copula approach with flat correlation of 20%

| Rating | Tranche  | 5-year   | Multiplier | Protection | Size | Spread |
|--------|----------|----------|------------|------------|------|--------|
|        |          | exp loss |            | value      |      | (bps)  |
| Baa    | [0-100%] | 1.296%   | 5.1        | 6.610%     | 100% | 144    |
|        |          |          |            |            |      |        |
| Aaa    | [8-100%] | 0.072%   | 16.8       | 1.210%     | 92%  | 26     |
| Ва     | [4-8%]   | 6.702%   | 2.1        | 14.074%    | 4%   | 321    |
| Rating | Tranche  | 5-year   | Multiplier | Protection | Size | Spread |
|        |          | exp loss | ,          | value      |      | (bps)  |

Excess Spread

=(144)

 $-26 \times 92\%$ 

 $-321 \times 4\%$ 

 $-1376 \times 4\%$ 

= 52 bps

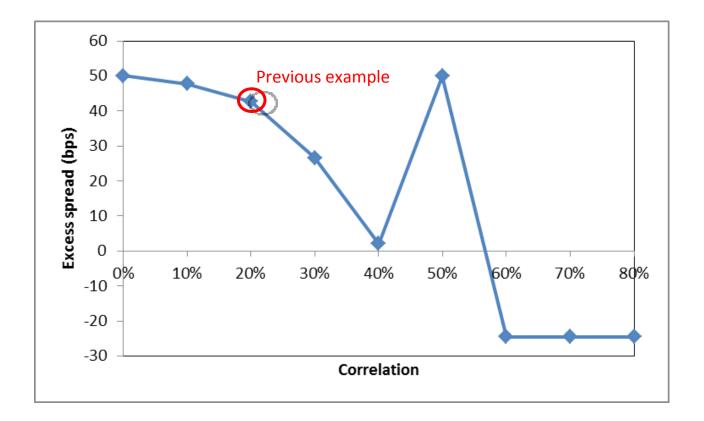
Hamilton, D., P. Varma, S. Ou., and R. Cantor, "Default & Recovery Rates of Corporate Bond Issuers, A Statistical Review of Moody's Ratings Performance, 1920-2003", 2003, Moody's Investor Research, January.

Hull, J., M. Predescu and A. White, 2005, "Bond Prices, Default Probabilities and Risk Premiums" Journal of Credit Risk, Vol. 1, No. 2, pp. 53-60.

Net protection value

 $= 6.610\% - 1.210\% \times 92\% + 14.074\% \times 4\% + 47.447\% \times 4\% = 3.036\%$ 

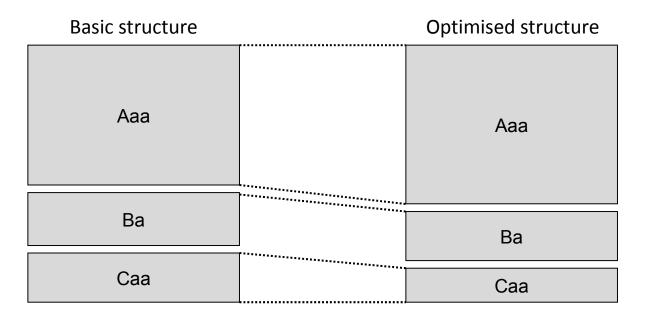
#### **Implication**




- Assuming investors demand a return based on the expected loss (via the rating) of a tranche
  - A CDO always "works" due to the risk preferences of investors (the equity tranche is relatively cheap to get rid of due to the small alpha multiplier)
  - Another implication of this is that rating agency modelling assumptions cannot cause the CDO to fail
  - For example, let us look at correlation assumptions

#### Excess spread as a function of correlation



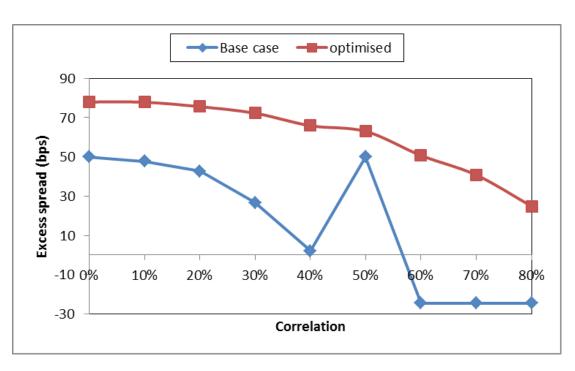

- Excess spread as a function of flat correlation assumptions in rating model
  - CDO clearly "fails" at high correlation

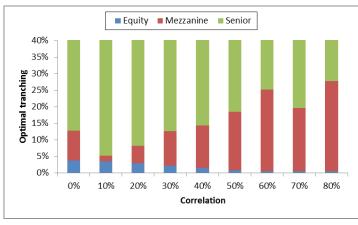


### Optimized structure (1)



Previous failure was due to the granularity in the ratings process





- Therefore we assume a simple optimisation
  - Make the equity tranche small enough to just support a given rating (Caa is best)
  - Find the size of the mezzanine tranche to give the best excess spread

### Optimized structure (2)



Now the CDO works at all correlation levels

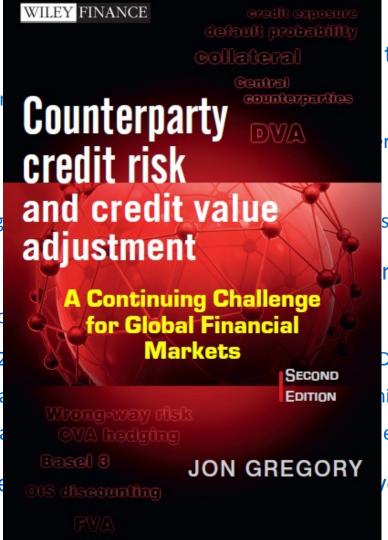




- Note there is still some inherent granularity
- Can't get any worse than Caa or better than Aaa



#### **Conclusions**




- A CDO works due to
  - The risk preferences of investors
  - The expected loss methodology used in the ratings process
  - A CDO is not a zero sum game
  - Both issuers and investors (and third parties) can gain
  - Just because an issuer makes money, no direct implication that investors are getting a bad deal
  - Rating agencies were not at fault?
  - No modelling assumptions would have caused CDOs to be unprofitable
  - Although rating agencies primary reliance on quantitative models based on expected loss as the only metric could be seen as too simplistic and a fundamental flaw

### So what did go wrong? (with CDOs at least)



- Lack of proper
  - The more ser
  - Large senior
     mitigate the
  - E.g. see Greg
  - Lack of ap
  - Were investo
  - Gibson, M., 2Discussion Pa"Economic ca
  - Maybe the problems



the structuring process

(relatively) – see my book!

rs without any collateral terms to

sk, August 2008

nior tranches

DOs", Finance and Economics ington DC / Coval et al, 2009, ew, 99(3), 628—66.

vercome the above