MIP reformulations of some chance-constrained mathematical programs

Ricardo Fukasawa

Department of Combinatorics & Optimization University of Waterloo

December 4th, 2012 FIELDS Industrial Optimization Seminar

joint work with Ahmad Abdi

Outline

Introduction

Our results

- Characterizing valid inequalities
- Separation over a large class of inequalities
- Explicit facet-defining inequalities
- Extended formulation

Outline

Introduction

Our results

- Characterizing valid inequalities
- Separation over a large class of inequalities
- Explicit facet-defining inequalities
- Extended formulation

3 Conclusion

A typical Linear Programming problem is of the form:

$$\begin{array}{ll} \text{(LP)} & \min & c^T x \\ & \text{s.t.} & Ax \leq b \end{array}$$

- Well-solved problem
- Several applications
- Basis of several algorithms for harder problems

A typical Linear Programming problem is of the form:

- Well-solved problem
- Several applications
- Basis of several algorithms for harder problems
- Key assumption: Data is deterministic, i.e., known in advance

A typical Linear Programming problem is of the form:

- Well-solved problem
- Several applications
- Basis of several algorithms for harder problems
- Key assumption: Data is deterministic, i.e., known in advance
- What do we do if that is not a realistic assumption? How do we deal with nondeterministic data?

A typical Linear Programming problem is of the form:

- Well-solved problem
- Several applications
- Basis of several algorithms for harder problems
- Key assumption: Data is deterministic, i.e., known in advance
- What do we do if that is not a realistic assumption? How do we deal with nondeterministic data?
- Some possible approaches:
 - Robust optimization: Obtain solutions feasible for any possible realization of data (usually assumes that there is some constraint on the values data can attain)

A typical Linear Programming problem is of the form:

- Well-solved problem
- Several applications
- Basis of several algorithms for harder problems
- Key assumption: Data is deterministic, i.e., known in advance
- What do we do if that is not a realistic assumption? How do we deal with nondeterministic data?
- Some possible approaches:
 - Robust optimization: Obtain solutions feasible for any possible realization of data (usually assumes that there is some constraint on the values data can attain)
 - Multi-stage stochastic optimization: User can take actions, observe realization of data and take corrective actions

A typical Linear Programming problem is of the form:

- Well-solved problem
- Several applications
- Basis of several algorithms for harder problems
- Key assumption: Data is deterministic, i.e., known in advance
- What do we do if that is not a realistic assumption? How do we deal with nondeterministic data?
- Some possible approaches:
 - Robust optimization: Obtain solutions feasible for any possible realization of data (usually assumes that there is some constraint on the values data can attain)
 - Multi-stage stochastic optimization: User can take actions, observe realization of data and take corrective actions
 - Consider "average" or "expected" data: Reduces to deterministic problem, but can give not too good solutions

A typical Linear Programming problem is of the form:

- Well-solved problem
- Several applications
- Basis of several algorithms for harder problems
- Key assumption: Data is deterministic, i.e., known in advance
- What do we do if that is not a realistic assumption? How do we deal with nondeterministic data?
- Some possible approaches:
 - Robust optimization: Obtain solutions feasible for any possible realization of data (usually assumes that there is some constraint on the values data can attain)
 - Multi-stage stochastic optimization: User can take actions, observe realization of data and take corrective actions
 - Consider "average" or "expected" data: Reduces to deterministic problem, but can give not too good solutions
 - Chance-constrained program: Want a high probability of satisfying set of constraints

Chance-constrained programs

Chanced-constrained linear programming problem with stochastic right-hand sides:

$$\begin{array}{ll} (\mathsf{PLP}) & \min \quad \boldsymbol{c}^T \boldsymbol{x} \\ & \text{s.t.} \quad \mathbb{P}(T\boldsymbol{x} \geq \xi) \geq 1 - \epsilon \\ & \boldsymbol{x} \in \boldsymbol{X}, \end{array}$$

• $X \subset \mathbb{R}^d$: a polyhedron,

- ξ : random variable in \mathbb{R}^m with finite discrete distribution,
- $T \in \mathbb{R}^{m \times d}$,
- $\epsilon \in (0,1)$, and
- $c \in \mathbb{R}^n$.

Suppose that ξ takes values from ξ^1, \ldots, ξ^n with probabilities π_1, \ldots, π_n , respectively.

Consider the special case where d = m = 3, n = 4, c = (1, 1, 1), $X = \mathbb{R}^{d}$, T = I, $\epsilon = 0.5$, $\pi = (0.25, 0.25, 0.25, 0.25)$. Let $\{\xi^{j}\}_{j=1}^{n} = \left\{ \begin{pmatrix} 4\\5\\2 \end{pmatrix}, \begin{pmatrix} 2\\8\\4 \end{pmatrix}, \begin{pmatrix} 7\\1\\3 \end{pmatrix}, \begin{pmatrix} 2\\5\\1 \end{pmatrix} \right\}$

Consider the special case where d = m = 3, n = 4, c = (1, 1, 1), $X = \mathbb{R}^d$, T = I, $\epsilon = 0.5$, $\pi = (0.25, 0.25, 0.25, 0.25)$. Let $\{\xi^j\}_{j=1}^n = \left\{ \begin{pmatrix} 4\\5\\2 \end{pmatrix}, \begin{pmatrix} 2\\8\\4 \end{pmatrix}, \begin{pmatrix} 7\\1\\3 \end{pmatrix}, \begin{pmatrix} 2\\5\\1 \end{pmatrix} \right\}$ min $c^T x$ s.t. $\mathbb{P}(Tx \ge \xi) \ge 1 - \epsilon \Rightarrow \min_{\substack{i=1\\i=1\\x \in X,}} \sum_{s.t.} \mathbb{P}(x \ge \xi) \ge 0.5$

Consider the special case where d = m = 3, n = 4, c = (1, 1, 1), $X = \mathbb{R}^d$, T = I, $\epsilon = 0.5$, $\pi = (0.25, 0.25, 0.25, 0.25)$. Let $\{\xi^j\}_{j=1}^n = \left\{ \begin{pmatrix} 4\\5\\2 \end{pmatrix}, \begin{pmatrix} 2\\8\\4 \end{pmatrix}, \begin{pmatrix} 7\\1\\3 \end{pmatrix}, \begin{pmatrix} 2\\5\\1 \end{pmatrix} \right\}$ min $c^T x$ s.t. $\mathbb{P}(Tx \ge \xi) \ge 1 - \epsilon \Rightarrow$ min $\sum_{i=1}^m x_i$ $x \in X$, s.t. $\mathbb{P}(x \ge \xi) \ge 0.5$

Then x is feasible if and only if $x \ge \xi^j$ for at least two $j \in \{1, \dots, 4\}$.

Consider the special case where d = m = 3, n = 4, c = (1, 1, 1), $X = \mathbb{R}^d$, T = I, $\epsilon = 0.5$, $\pi = (0.25, 0.25, 0.25, 0.25)$. Let $\{\xi^j\}_{j=1}^n = \left\{ \begin{pmatrix} 4\\5\\2 \end{pmatrix}, \begin{pmatrix} 2\\8\\4 \end{pmatrix}, \begin{pmatrix} 7\\1\\3 \end{pmatrix}, \begin{pmatrix} 2\\5\\1 \end{pmatrix} \right\}$ min $c^T x$ s.t. $\mathbb{P}(Tx \ge \xi) \ge 1 - \epsilon \Rightarrow \min_{\substack{i=1\\i=1\\x \in X,}} \sum_{s.t.} \mathbb{P}(x \ge \xi) \ge 0.5$

Then x is feasible if and only if $x \ge \xi^j$ for at least two $j \in \{1, \dots, 4\}$. Then $x = \begin{pmatrix} 2 \\ 7 \\ 1 \end{pmatrix}$ is not feasible, since it $Tx = x \not\ge \xi^j$, for j = 1, 2, 3.

Consider the special case where d = m = 3, n = 4, c = (1, 1, 1), $X = \mathbb{R}^d$, T = I, $\epsilon = 0.5$, $\pi = (0.25, 0.25, 0.25, 0.25)$. Let $\{\xi^j\}_{j=1}^n = \left\{ \begin{pmatrix} 4\\5\\2 \end{pmatrix}, \begin{pmatrix} 2\\8\\4 \end{pmatrix}, \begin{pmatrix} 7\\1\\3 \end{pmatrix}, \begin{pmatrix} 2\\5\\1 \end{pmatrix} \right\}$ min $c^T x$ s.t. $\mathbb{P}(Tx \ge \xi) \ge 1 - \epsilon \Rightarrow \min_{\substack{i=1\\i=1\\i\in X,}} \sum_{i=1}^m x_i$ s.t. $\mathbb{P}(x \ge \xi) \ge 0.5$

Then x is feasible if and only if $x \ge \xi^j$ for at least two $j \in \{1, \dots, 4\}$. Then $x = \begin{pmatrix} 4 \\ 7 \\ 2 \end{pmatrix}$ is feasible, since it $Tx = x \ge \xi^j$, for j = 1, 2.

Consider the special case where d = m = 3, n = 4, c = (1, 1, 1), $X = \mathbb{R}^d$, T = I, $\epsilon = 0.5$, $\pi = (0.25, 0.25, 0.25, 0.25)$. Let $\{\xi^j\}_{j=1}^n = \left\{ \begin{pmatrix} 4\\5\\2 \end{pmatrix}, \begin{pmatrix} 2\\8\\4 \end{pmatrix}, \begin{pmatrix} 7\\1\\3 \end{pmatrix}, \begin{pmatrix} 2\\5\\1 \end{pmatrix} \right\}$ min $c^T x$ s.t. $\mathbb{P}(Tx \ge \xi) \ge 1 - \epsilon \Rightarrow$ min $\sum_{i=1}^m x_i$ $x \in X$, $s.t. \mathbb{P}(x \ge \xi) \ge 0.5$

Then x is feasible if and only if $x \ge \xi^j$ for at least two $j \in \{1, ..., 4\}$. So to get a feasible solution, one needs to pick any two out of 4 scenarios to be satisfied.

Thus

$$\begin{array}{ll} \min & c^T x \\ \text{s.t.} & \mathbb{P}(Tx \ge \xi) \ge 1 - \epsilon \implies & \min & \sum_{i=1}^m \max_{j \in I} \xi_i^j \\ & x \in X, & \text{s.t.} & I \subseteq \{1, \dots, n\}, |I| \ge 2 \end{array}$$

min
$$\sum_{i=1}^{m} \max_{j \in I} \xi_i^j$$

s.t. $I \subseteq \{1, \dots, n\}, |I| \ge K$

NP-complete problem CLIQUE: Given G = (V, E), is there a clique of size at least C?

$$\begin{array}{ll} \min & \sum\limits_{i=1}^{m} \max_{j \in I} \xi_{i}^{j} \\ \text{s.t.} & I \subseteq \{1, \dots, n\}, |I| \geq K \end{array}$$

NP-complete problem CLIQUE: Given G = (V, E), is there a clique of size at least C? Translate:

- Vertices to constraints
- Edges to scenarios

$$\begin{array}{ll} \min & \sum\limits_{i=1}^{m} \max_{j \in I} \xi_{i}^{j} \\ \text{s.t.} & I \subseteq \{1, \dots, n\}, |I| \geq K \end{array}$$

NP-complete problem CLIQUE: Given G = (V, E), is there a clique of size at least C? Translate:

- Vertices to constraints
- Edges to scenarios
- $\xi_v^e = 1$ if edge *e* is incident to vertex *v*, 0 otherwise.

$$\begin{array}{ll} \min & \sum\limits_{i=1}^{m} \max_{j \in I} \xi_{i}^{j} \\ \text{s.t.} & I \subseteq \{1, \dots, n\}, |I| \geq K \end{array}$$

NP-complete problem CLIQUE: Given G = (V, E), is there a clique of size at least C? Translate:

- Vertices to constraints
- Edges to scenarios

 $\xi_v^e = 1$ if edge *e* is incident to vertex *v*, 0 otherwise.

min
$$\sum_{v \in V} \max_{e \in I} \xi_v^e$$

s.t. $I \subseteq E, |I| \ge k$

$$\begin{array}{ll} \min & \sum\limits_{i=1}^{m} \max\limits_{j \in I} \xi_{i}^{j} \\ \text{s.t.} & I \subseteq \{1, \dots, n\}, |I| \geq K \end{array}$$

NP-complete problem CLIQUE: Given G = (V, E), is there a clique of size at least C? Translate:

- Vertices to constraints
- Edges to scenarios
- $\xi_v^e = 1$ if edge *e* is incident to vertex *v*, 0 otherwise.

min
$$\sum_{v \in V} \max_{e \in I} \xi_v^e$$

s.t. $I \subseteq E, |I| \ge K$

is the cardinality of the smallest set of vertices covering at least K edges of G.

$$\begin{array}{ll} \min & \sum\limits_{i=1}^{m} \max\limits_{j \in I} \xi_{i}^{j} \\ \text{s.t.} & I \subseteq \{1, \dots, n\}, |I| \geq K \end{array}$$

NP-complete problem CLIQUE: Given G = (V, E), is there a clique of size at least C? Translate:

- Vertices to constraints
- Edges to scenarios
- $\xi_v^e = 1$ if edge *e* is incident to vertex *v*, 0 otherwise.

$$\begin{array}{ll} \min & \sum_{v \in V} \max_{e \in I} \xi_v^e \\ \text{s.t.} & I \subseteq E, |I| \ge K \end{array}$$

is the cardinality of the smallest set of vertices covering at least K edges of G. So if there is a clique of size C(C - 1)/2, then there is a solution to such problem with K = C(C - 1)/2 and objective $\leq C$ (and vice-versa).

Comments

• In the case of continuous distribution, even checking feasibility can be challenging, since it entails multidimensional integration

Comments

- In the case of continuous distribution, even checking feasibility can be challenging, since it entails multidimensional integration
- Nonetheless, the discrete distribution case with Monte-Carlo sampling and using as confidence parameter α > ε gives us a lower bound on the optimal solution with probability 1 exp{-2n(α ε)²} (Luedtke et al, 2010).

Comments

- In the case of continuous distribution, even checking feasibility can be challenging, since it entails multidimensional integration
- Nonetheless, the discrete distribution case with Monte-Carlo sampling and using as confidence parameter $\alpha > \epsilon$ gives us a lower bound on the optimal solution with probability $1 exp\{-2n(\alpha \epsilon)^2\}$ (Luedtke et al, 2010).
- Under some mild assumptions (like continuity), the discrete distribution case with Monte-Carlo sampling and using as confidence parameter $\alpha < \epsilon$ gives us a feasible solution with probability approaching 1 exponentially with *n* (Luedtke et al, 2010).

Previous work on Chance-constrained programs

- Charnes et al. (1958) Chance-constrained programs with disjoint probabilistic constraints
- Miller and Wagner (1965) Chance-constrained programs with joint probabilistic constraints for independent random variables.
- Prékopa (1970) Log-concave probability measure on random right-hand sides: There is an equivalent convex program
- Sen (1992) Chance-constrained programs with discrete distributions using disjunctive programming reformulation.
- Ruszczynski (2002) Precedence-constrained knapsack set: Use scenarios that dominate others.
- Luedtke, Ahmed and Nemhauser (2010) and Küçükyavuz (2012) -Chance-constrained programs with discrete random variables in the right-hand-side: MIP reformulation
- Our work: Extends Luedtke et al. (2010) and Küçükyavuz (2012)

MIP reformulation [Luedtke, Ahmed and Nemhauser, 2010] Let $z \in \{0,1\}^n$ where $z_j = 0$ guarantees that $Tx \ge \xi_j$. Then (PLP) is equivalent to

Let's look at a single chance-constraint: For each $k \in [m]$, let

$$\mathcal{D}_k := \left\{ (y_k, z) \in \mathbb{R}_+ imes \{0, 1\}^n : \sum_{j=1}^n \pi_j z_j \leq \epsilon, \ y_k + \xi_{jk} z_j \geq \xi_{jk} \ \forall j \in [n]
ight\}$$

Goal

Study \mathcal{D}_k and get cuts to strengthen the MIP formulation

Changing notation a bit:

$$\mathcal{Q}:=\left\{(y,z)\in\mathbb{R}_+ imes\{0,1\}^n:\sum_{j\in[n]}a_jz_j\leq p,\,\,y+h_jz_j\geq h_j\,\,orall j\in[n]
ight\}.$$

Other related work

Mixing set with a knapsack constraint:

$$\mathcal{Q} := \left\{ (y,z) \in \mathbb{R}_+ imes \{0,1\}^n : \sum_{j \in [n]} a_j z_j \leq p, \ y+h_j z_j \geq h_j \ \forall j \in [n]
ight\}.$$

- Work on the mixing set:
 - Günlük and Pochet
 - Zhao and de Farias,
 - Conforti, di Summa and Wolsey
 - Miller and Wolsey
 - van Vyve
 - to mention a few
- Qiu, Ahmed, Dey, Wolsey Cover LPs with violation
- J. Luedtke, S. Küçükyavuz, Y. Song, A Branch-and-Cut Algorithm for the Chance-Constrained Knapsack Problem.
- S. Küçükyavuz, M. Zhang, On Continuous Mixing Set with a Cardinality Constraint.

Mixed Integer Programming (MIP):

min
$$c^T x$$

s.t. $Ax \leq b$
 $x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$

- **Q** Let P_l be the set of feasible solutions to our MIP.
- **Q** Let *R* be a relaxation of P_l (typically by dropping integrality constraints), that is $R \supseteq P_l$.
- Solve the optimization problem over R, with optimal solution $x^* \in R$
- Find a cut/cutting plane/valid inequality: An inequality $\pi^T x \le \pi_o$ satisfied by all $x \in P_I$, but with $\pi^T x^* > \pi_o$
- Let $R \leftarrow R \cap \{x : \pi^T x \leq \pi_o\}$
- Go to 3

Mixed Integer Programming (MIP):

$$\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \leq b \\ & x \in \mathbb{Z}^p \times \mathbb{R}^{n-p} \end{array}$$

Mixed Integer Programming (MIP):

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \leq b \\ & x \in \mathbb{Z}^p \times \mathbb{R}^{n-p} \end{array}$

Mixed Integer Programming (MIP):

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \leq b \\ & x \in \mathbb{Z}^p \times \mathbb{R}^{n-p} \end{array}$

Mixed Integer Programming (MIP):

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \leq b \end{array}$

Mixed Integer Programming (MIP):

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \leq b \end{array}$

 $\pi^1 x \leq \pi^1_o$

Mixed Integer Programming (MIP):

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \leq b \end{array}$

 $\pi^1 x \leq \pi^1_o$

Mixed Integer Programming (MIP):

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \leq b \end{array}$

 $\begin{aligned} \pi^1 x &\leq \pi^1_o \\ \pi^2 x &\leq \pi^2_o \end{aligned}$

Mixed Integer Programming (MIP):

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \leq b \end{array}$

 $\begin{aligned} \pi^1 x &\leq \pi^1_o \\ \pi^2 x &\leq \pi^2_o \end{aligned}$

Mixed Integer Programming (MIP):

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \leq b \end{array}$

 $\begin{aligned} \pi^1 x &\leq \pi^1_o \\ \pi^2 x &\leq \pi^2_o \\ \pi^3 x &\leq \pi^3_o \end{aligned}$

Mixed Integer Programming (MIP):

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \leq b \end{array}$

 $\begin{aligned} \pi^1 x &\leq \pi^1_o \\ \pi^2 x &\leq \pi^2_o \\ \pi^3 x &\leq \pi^3_o \end{aligned}$

Mixed Integer Programming (MIP):

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \leq b \end{array}$

Valid inequalities/ Cutting planes/ Cuts

Mixed Integer Programming (MIP):

Want "strongest possible" valid inequalities (facet-defining): Get the convex hull of feasible solutions

Mixed Integer Programming (MIP):

Want "strongest possible" valid inequalities (facet-defining): Get the convex hull of feasible solutions

OBS: A strong formulation may be obtained implicitly, for instance as a projection of a higher dimensional polyhedron (Extended formulation).

Mixing set with a knapsack constraint

Luedtke et al. (2010) and Küçükyavuz (2012) study inequalities for

$$\mathcal{Q} := \left\{ (y,z) \in \mathbb{R}_+ \times \{0,1\}^n : \sum_{j \in [n]} a_j z_j \leq p, \ y + h_j z_j \geq h_j \ \forall j \in [n] \right\}.$$

• For the cardinality constraint/equal probabilities case (all $a_j = 1$):

- Characterization of all valid inequalities and separation (Luedtke et al.)
- Extended formulation (Luedtke et al.)
- (T, Π_L) inequalities (Küçükyavuz)
- Compact extended formulation (Küçükyavuz)
- For the general constraint/probabilities case:
 - Strengthened star inequalities (Luedtke et al.)
 - Extended formulation for LP+strengthen star (Luedtke et al.)
 - Strengthened (T, Π_L) inequalities (Küçükyavuz)

Mixing set with a knapsack constraint

Experiments by Küçükyavuz:

Table 2 Probabilistic lot-sizing experiments

ſ	τ	Gap	% Gapimp			Cuts			Nodes			Time (endgap)		
			CPX	Mix	TL	CPX	Mix	TL	CPX	Mix	TL	CPX	Mix	TL
0	5	1.3	23	90	90	85	559	199	1,139	117	81	130	255	59
	10	1.7	26	97	97	131	833	333	10,493	171	68	821	529	104
	15	2.0	24	98	98	217	1360	559	36,765	265	209	т(0,4)	1,387	341
	20	2.4	18	97	97	248	1,527	779	25479.0	291	418	т(1.0)	1,764	967
1	5	2.4	47	74	74	235	574	359	72,889	3,258	15,663	т(0.3)	т(0.4)	3,476 (0.2)
	10	2,7	43	78	77	288	846	499	39,773	1,323	4,169	т(0.7)	т(0.5)	т(0.4)
	15	3.1	39	77	76	373	1,334	707	22,837	492	1,831	т(1.4)	т(0,7)	т (0.6)
	20	3.5	36	75	76	452	1,849	1,089	17.031	245	939	т(1.7)	т(0.9)	т(0.7)

Mixing set with a knapsack constraint

1

Luedtke et al. (2010) and Küçükyavuz (2012) study inequalities for

$$\mathcal{Q} := \left\{ (y,z) \in \mathbb{R}_+ \times \{0,1\}^n : \sum_{j \in [n]} a_j z_j \leq p, \ y+h_j z_j \geq h_j \ \forall j \in [n] \right\}.$$

• For the cardinality constraint/equal probabilities case (all $a_j = 1$):

- Characterization of all valid inequalities and separation (Luedtke et al.)
- Extended formulation (Luedtke et al.)
- (T, Π_L) inequalities (Küçükyavuz)
- Compact extended formulation (Küçükyavuz)
- For the general constraint/probabilities case:
 - Strengthened star inequalities (Luedtke et al.)
 - Extended formulation for LP+strengthen star (Luedtke et al.)
 - Strengthened (T, Π_L) inequalities (Küçükyavuz)

Our goal: Extend their results

`

Outline

Introduction

Our results

- Characterizing valid inequalities
- Separation over a large class of inequalities
- Explicit facet-defining inequalities
- Extended formulation

Valid inequalities for Q

Lemma

Suppose that

$$\gamma y + \sum_{j \in [n]} \alpha_j z_j \ge \beta \tag{1}$$

is a valid inequality for conv(Q) for some $\alpha \in \mathbb{R}^n, \gamma, \beta \in \mathbb{R}$. Then $\gamma \ge 0$. Moreover, if $\gamma = 0$ then (1) is a valid inequality for $\mathcal{P} := \{z \in \{0,1\}^n : \sum_{j=1}^n a_j z_j \le p\}.$

Proof.

Observe that $(1,0) \in \text{rcone}(\text{conv}(\mathcal{Q}))$. This implies that $\gamma \geq 0$. Moreover, since $\text{conv}(\mathcal{P}) = \text{proj}_z(\text{conv}(\mathcal{Q}))$, it follows that if $\gamma = 0$ then (1) is a valid inequality for $\text{conv}(\mathcal{P})$.

$$\mathcal{Q} := \left\{ (y,z) \in \mathbb{R}_+ imes \{0,1\}^n : \sum_{j \in [n]} a_j z_j \leq p, \ y+h_j z_j \geq h_j \ orall j \in [n]
ight\}.$$

- We may assume, WLOG that $h_1 \ge h_2 \ge \ldots h_n$.
- Let $\nu := \max\{k : \sum_{j \le k} a_j \le p\}.$
- If $h_k > y \geq h_{k+1}$, then $z_j = 1$ for all $j \leq k$
- Therefore, $y \ge h_{\nu+1}$

Inequalities that do not come from \mathcal{P}

Previous Lemma implies we may assume have the form:

$$y + \sum_{j \in [n]} \alpha_j z_j \ge \beta$$

Define, for each $0 \le k \le \nu$, the knapsack set

$$\mathcal{P}_k := \left\{ z \in \{0,1\}^{[n]} : \sum_{j>k} a_j z_j \leq p - \sum_{j\leq k} a_j
ight\}.$$

Theorem (Abdi and F.)

 $y + \sum_{j \in [n]} \alpha_j z_j \ge \beta \text{ is a valid inequality for } \operatorname{conv}(\mathcal{Q}) \text{ if and only if } (\alpha, \beta) \in \mathcal{G}, \text{ where}$ $\mathcal{G} := \left\{ (\alpha, \beta) \in \mathbb{R}^n \times \mathbb{R} : \sum_{j \le k} \alpha_j + \sum_{j > k} \alpha_j z_j^* + h_{k+1} \ge \beta, \ \forall \ z^* \in \mathcal{P}_k, \forall \ 0 \le k \le \nu. \right\}$

$\mathsf{Rewriting}\ \mathcal{G}$

$$\mathcal{G} := \left\{ (\alpha, \beta) \in \mathbb{R}^n \times \mathbb{R} : \sum_{j \leq k} \alpha_j + \sum_{j > k} \alpha_j z_j^* + h_{k+1} \geq \beta, \ \forall \ z^* \in \mathcal{P}_k, \forall \ 0 \leq k \leq \nu. \right\}$$

Let

$$f_k(\alpha) := \min\left\{\sum_{j>k} \alpha_j z_j : z \in \mathcal{P}_k\right\}.$$
 (2)

Then it is easy to see that

$$\mathcal{G} = \left\{ (\alpha, \beta) \in \mathbb{R}^n \times \mathbb{R} : \sum_{j \leq k} \alpha_j + f_k(\alpha) + h_{k+1} \geq \beta, \ \forall \ 0 \leq k \leq \nu \right\}.$$

Proof

(⇐) Let $(y^*, z^*) \in Q$. Let $h_0 := +\infty$. Then $h_k > y^* \ge h_{k+1}$ for some $0 \le k \le \nu$. Since $z_j^* = 1$ for all $j \le k$, $z^* \in \mathcal{P}_k$. Then

$$y^* + \sum_{j \in [n]} \alpha_j z_j^* \ge h_{k+1} + \sum_{j \le k} \alpha_j + \sum_{j > k} \alpha_j z_j^*$$
$$\ge h_{k+1} + \sum_{j \le k} \alpha_j + f_k(\alpha)$$
$$\ge \beta \quad \text{since } (\alpha, \beta) \in \mathcal{G}$$

Proof

(⇒) Take $0 \le k \le \nu$. Let $z^* \in \{0,1\}^n$ be an optimal solution to $f_k(\alpha)$ with $z_j^* = 1$ for all $1 \le j \le k$. Let $y^* = h_{k+1}$. Observe that $(y^*, z^*) \in Q$. Hence, validity implies that

$$\beta \leq y^* + \sum_{j \in [n]} \alpha_j z_j^*$$

= $h_{k+1} + \sum_{j \leq k} \alpha_j + \sum_{j > k} \alpha_j z_j^*$
= $h_{k+1} + \sum_{j \leq k} \alpha_j + f_k(\alpha).$

Since this holds for all $0 \le k \le \nu$, it follows that $(\alpha, \beta) \in \mathcal{G}$.

• This theorem implies that separation over inequalities of this form can be done in polytime if optimization over \mathcal{P} can be solved in polytime

$$f_k(\alpha) := \min\left\{\sum_{j>k} \alpha_j z_j : z \in \mathcal{P}_k\right\}.$$

- This theorem implies that separation over inequalities of this form can be done in polytime if optimization over \mathcal{P} can be solved in polytime
- It implies that separation over inequalities of this form can be done in polytime if optimization over P_k can be solved in polytime, for all 0 ≤ k ≤ ν

$$f_k(\alpha) := \min\left\{\sum_{j>k} \alpha_j z_j : z \in \mathcal{P}_k\right\}.$$

- This theorem implies that separation over inequalities of this form can be done in polytime if optimization over \mathcal{P} can be solved in polytime
- It implies that separation over inequalities of this form can be done in polytime if optimization over P_k can be solved in polytime, for all 0 ≤ k ≤ ν
- Note that if $\alpha \geq 0$, $f_k(\alpha)$ can be solved easily for all k

$$f_k(\alpha) := \min\left\{\sum_{j>k} \alpha_j z_j : z \in \mathcal{P}_k\right\}.$$

- This theorem implies that separation over inequalities of this form can be done in polytime if optimization over \mathcal{P} can be solved in polytime
- It implies that separation over inequalities of this form can be done in polytime if optimization over \mathcal{P}_k can be solved in polytime, for all $0 \le k \le \nu$
- Note that if $\alpha \geq 0$, $f_k(\alpha)$ can be solved easily for all k
- Complexity of separation "resides" in negative coefficients.

$$f_k(\alpha) := \min\left\{\sum_{j>k} \alpha_j z_j : z \in \mathcal{P}_k\right\}.$$

Separation over a large class of inequalities

Let R, S be a partition of [n]. Let's assume that $j \in R$ implies $\alpha_j \ge 0$. Then any inequality of the form

$$y + \sum_{j \in [n]} \alpha_j z_j \ge \beta$$

with $\alpha_j \geq 0$, for all $j \in R$ is in $\mathcal{G} \cap \{\alpha_j \geq 0, \forall j \in R\}$

Theorem (Abdi and F.)

If optimization over $\{z \in \{0,1\}^S : \sum_{j \in S} a_j z_j \le p\}$ can be done in polynomial time, then separation over all valid inequalities $y + \sum_{j \in [n]} \alpha_j z_j \ge \beta$ such that $\alpha_j \ge 0, \forall j \in R = [n] \setminus S$ can be done in polynomial-time.

Examples:

- a_j not too large for $j \in S$
- All a_j equal for $j \in S$ (in this case, a better characterization is possible)

Theorem (Abdi and F.)

Consider an inequality of the form

$$y + \sum_{j \in [n]} \alpha_j z_j \ge \beta.$$
(3)

If there exists $(\sigma, \rho) \in \mathbb{R}^{\nu+1}_{-} \times \mathbb{R}^{(\nu+1)(n-\nu/2)}_{-}$ such that $(\alpha, \beta, \sigma, \rho) \in \mathcal{J}$, then (3) is a valid inequality for $\operatorname{conv}(\mathcal{Q})$. Furthermore, when $a_i = 1$ for all $i \in S \subseteq [n]$ and (3) is a valid inequality for $\operatorname{conv}(\mathcal{Q})$ with $\alpha_j \ge 0, \forall j \in R := [n] \setminus S$, then there exists $(\sigma, \rho) \in \mathbb{R}^{\nu+1}_{-} \times \mathbb{R}^{(\nu+1)(n-\nu/2)}_{-}$ such that $(\alpha, \beta, \sigma, \rho) \in \mathcal{J}$, where

$$\mathcal{J} := \left\{ \begin{aligned} & \sum_{j \leq k} \alpha_j + \beta_k \sigma_k + \sum_{j > k} \rho_{kj} + h_{k+1} \geq \beta & \forall \ 0 \leq k \leq \nu, \\ & \mathbf{a}_j \sigma_k + \rho_{kj} \leq \alpha_j & \forall \ n \geq j > k \\ & \forall \ 0 \leq k \leq \nu. \end{aligned} \right\} \\ & \sigma, \rho \leq \mathbf{0}, \alpha_j \geq \mathbf{0}, \forall j \in R \end{aligned}$$

Proof idea

We saw that the set of valid inequalities is characterized by

$$f_k(lpha) := \min\left\{\sum_{j>k} lpha_j z_j : z \in \mathcal{P}_k
ight\}$$

Proof idea

We saw that the set of valid inequalities is characterized by

$$f_k(\alpha) := \min\left\{\sum_{j>k} \alpha_j z_j : z \in \mathcal{P}_k\right\}$$

We don't have a good characterization for this solution, but if $a_i = 1$ for all j such that $\alpha_j < 0$, then we can easily characterize the solution to $f_k(\alpha)$.

Proof idea

We saw that the set of valid inequalities is characterized by

$$f_k(lpha) := \min\left\{\sum_{j>k} lpha_j z_j : z \in \mathcal{P}_k
ight\}$$

We don't have a good characterization for this solution, but if $a_i = 1$ for all j such that $\alpha_j < 0$, then we can easily characterize the solution to $f_k(\alpha)$.

Use such characterization and LP duality to obtain the formulation.

Properties of facet-defining inequalities for conv(Q)

Lemma (Abdi and F.)

Suppose that the inequality

$$y + \sum_{j \in [n]} \alpha_j z_j \ge \beta$$

is facet-defining for conv(Q). Then (i) (α, β) is an extreme point of G, (ii) $\beta = h_1 + f_0(\alpha)$, and (iii) if $\alpha_k < 0$ for some $1 \le k \le n$, then $a_k > 0$.

Note:
$$f_0(\alpha) := \min\left\{\sum_{j \in [n]} \alpha_j z_j : \sum_{j \in [n]} a_j z_j \le p\right\}$$

(4)

• Consider the cardinality constrained case $(a_j = 1, \forall j)$.

- Consider the cardinality constrained case $(a_j = 1, \forall j)$.
- Suppose I have a partition R, S of [n], with $\alpha_j < 0 \Rightarrow j \in S$ and $\alpha_j > 0 \Rightarrow j \in R$.

- Consider the cardinality constrained case $(a_j = 1, \forall j)$.
- Suppose I have a partition R, S of [n], with $\alpha_j < 0 \Rightarrow j \in S$ and $\alpha_j > 0 \Rightarrow j \in R$.
- Suppose $|S| \le p$

- Consider the cardinality constrained case $(a_j = 1, \forall j)$.
- Suppose I have a partition R, S of [n], with $\alpha_j < 0 \Rightarrow j \in S$ and $\alpha_j > 0 \Rightarrow j \in R$.
- Suppose $|S| \leq p$
- Then $f_0(\alpha) := \min \left\{ \sum_{j \in [n]} \alpha_j z_j : \sum_{j \in [n]} a_j z_j \le p \right\} = \sum_{j \in S} \alpha_j$, hence any such facet-defining inequality will have the form:

$$y + \sum_{j \in R} \alpha_j z_j + \sum_{j \in S} \alpha_j z_j \ge h_1 + \sum_{j \in S} \alpha_j$$

- Consider the cardinality constrained case $(a_j = 1, \forall j)$.
- Suppose I have a partition R, S of [n], with $\alpha_j < 0 \Rightarrow j \in S$ and $\alpha_j > 0 \Rightarrow j \in R$.
- Suppose $|S| \leq p$
- Then $f_0(\alpha) := \min \left\{ \sum_{j \in [n]} \alpha_j z_j : \sum_{j \in [n]} a_j z_j \le p \right\} = \sum_{j \in S} \alpha_j$, hence any such facet-defining inequality will have the form:

$$egin{aligned} & y + \sum_{j \in R} lpha_j z_j + \sum_{j \in S} lpha_j z_j \geq h_1 + \sum_{j \in S} lpha_j z_j \ & y + \sum_{j \in R} lpha_j z_j + \sum_{j \in S} \Delta_j (1 - z_j) \geq h_1 \end{aligned}$$

with $\alpha, \Delta \geq 0$

Luedtke et al.'s inequalities

Luedtke et al.'s inequalities for the cardinality constrained case:

Theorem (Luedtke et al.)

Let $m \in \{1, ..., p\}$, $R = \{r_1, ..., r_a\} \subseteq \{1, ..., m\}$ and $S = \{q_1, ..., q_{p-m}\} \subseteq \{p + 1, ..., n\}$. For m < p, define $\Delta_1^m = h_{m+1} - h_{m+2}$ and

$$\Delta_i^m = \max\left\{\Delta_{i-1}^m, h_{m+1} - h_{m+i+1} - \sum_{j=1}^{i-1}\Delta_j^m\right\}, i = 2, \dots, p - m$$

Then, with $h_{r_{a+1}} = h_{m+1}$,

$$y + \sum_{j=1}^{a} (h_{r_j} - h_{r_{j+1}}) z_{r_j} + \sum_{j=1}^{p-m} \Delta_j^m (1 - z_{q_j}) \ge h_{r_1}$$

is valid for Q and facet-defining if $h_{r_1} = h_1$

Validity proof

Note: $0 \leq \Delta_1^m \leq \Delta_2^m \leq \ldots \leq \Delta_{p-m}^m$

$$\mathcal{G} := \left\{ (lpha, eta) \in \mathbb{R}^n imes \mathbb{R} : \sum_{j \leq k} lpha_j + f_k(lpha) + h_{k+1} \geq eta, orall \ \mathbf{0} \leq k \leq
u.
ight\}$$

In this case, $\nu = p$. Note that $S \subseteq \{p + 1, \dots, n\}$, so $j \in S \Rightarrow j > \nu = p$.

$$f_k(\alpha) := \min\left\{\sum_{j>k} \alpha_j z_j : z \in \mathcal{P}_k\right\}$$
$$f_k(\alpha) := \min\left\{\sum_{j\in S} -\Delta_j^m z_j : \sum_{j\in S} z_j \le p - k\right\} = -\sum_{j=k-m+1}^{p-m} \Delta_j^m$$

$$\sum_{j\leq k}\alpha_j+f_k(\alpha)+h_{k+1}\geq\beta$$

becomes

$$\sum_{j \le k: j \in R} \alpha_j - \sum_{j=k-m+1}^{p-m} \Delta_j^m + h_{k+1} \ge h_1 - \sum_{j \in S} \Delta_j^m \iff$$
$$\sum_{j \le k: j \in R} \alpha_j + \sum_{j=1}^{k-m} \Delta_j^m + h_{k+1} \ge h_1$$

Note that $\sum_{j \le k: j \in R} \alpha_j = h_1 - h_{r_t}$ for some $r_t > k$.

$$\sum_{j \le k: j \in R} \alpha_j + \sum_{j=1}^{k-m} \Delta_j^m + h_{k+1} \ge h_1$$

So if k < m

$$\sum_{j \le k: j \in R} \alpha_j + \sum_{j=1}^{k-m} \Delta_j^m + h_{k+1} = h_1 - h_{r_t} + h_{k+1} \ge h_1$$

And if $k \geq m$, $\Delta_{k-m}^m \geq h_{m+1} - h_{m+k-m+1} - \sum_{j=1}^{k-m-1} \Delta_j^m$ so

$$\sum_{j \le k: j \in R} \alpha_j + \sum_{j=1}^{k-m} \Delta_j^m + h_{k+1} \ge \sum_{j \in R} \alpha_j + h_{m+1} - h_{k+1} + h_{k+1} = h_1 - h_{r_{a+1}} + h_{m+1} = h_1$$

Theorem (Küçükyavuz, 2012)

Suppose that $a_j = 1$ for all $j \in [n]$. Take a positive integer $m \le \nu = p$. Suppose that (i) $R := \{r_1, \ldots, r_a\} \subset \{1, \ldots, m\}$, where $r_1 < \ldots < r_a$; and (ii) $S \subset \{m + 2, \ldots, n\}$ and take a permutation of the elements in S, $\Pi_S := \{q_1, \ldots, q_{p-m}\}$ such that $q_j > m + j$ for all $1 \le j \le p - m$. Set $r_{a+1} := m + 1$. Let $\Delta_1 := h_{m+1} - h_{m+2}$, and for $2 \le j \le p - m$ define

$$\Delta_j := \max \left\{ \Delta_{j-1}, h_{m+1} - h_{m+1+j} - \sum \left(\Delta_i : q_i > m+j, i < j
ight)
ight\}.$$

Then the (T, Π_L) inequality

$$y + \sum_{j=1}^{a} (h_{r_j} - h_{r_{j+1}}) z_{r_j} + \sum_{j=1}^{p-m} \Delta_j (1 - z_{q_j}) \ge h_{r_1}$$
(5)

is valid for conv(Q). Furthermore, (5) is facet-defining inequality for conv(Q) if and only if $h_{r_1} = h_1$.
Theorem (Abdi and F.)

Take an integer
$$0 \le m \le \nu$$
 such that $p - s_m$ is an integer. For each $1 \le j \le p - s_m$, let
 $k(j) := \max\{k : j \ge s_k - s_m\}$. Let
(i) $R := \{r_1, \dots, r_a\} \subset \{1, \dots, m\}$ where $r_1 < \dots < r_a$;
(ii) $S := \{q_1, \dots, q_s\} \subset \{m + 2, \dots, n\}$ where $s = p - s_m$ and $q_j > k(j)$ for all
 $1 \le j \le p - s_m$; and
(iii) S is chosen so that $a_j = 1$ for all $j \in S$, and $a_j \le s_m$ for all $j \notin S$.
Set $r_{a+1} = m + 1$. Let $\Delta_{q_1} := h_{m+1} - h_{k(1)+1}$, and for $2 \le j \le p - s_m$, define
 $\Delta_{q_j} := \max\left\{\Delta_{q_{j-1}}, h_{m+1} - h_{k(j)+1} + \sum (\Delta_{q_i} : q_i > k(j), i < j)\right\}$. (6)
Then

$$y + \sum_{j=1}^{a} (h_{r_j} - h_{r_{j+1}}) z_{r_j} + \sum_{i \in S} \Delta_i (1 - z_i) \ge h_{r_1}$$
(7)

is a valid inequality for conv(Q). Furthermore, (7) is a facet-defining inequality for conv(Q) if and only if $h_{r_1} = h_1$.

Extended formulation

Kücükyavuz (2012):

- If (y^*, z^*) is an extreme point of conv (\mathcal{Q}) , then $y \in \{h_1, h_2, \dots, h_{\nu+1}\}$.
- For each $0 \le k \le \nu$, let

$$egin{aligned} \mathcal{Q}_{k+1} &:= \left\{ (y,z) \in \{h_{k+1}\} imes \{0,1\}^n : \sum_{j \in [n]} a_j z_j \leq p, z_j \geq 1 \ orall \ j \leq k
ight\}. \ \mathcal{R}_{k+1} &:= \left\{ (y,z) \in \{h_{k+1}\} imes [0,1]^n : \sum_{j \in [n]} a_j z_j \leq p, z_j \geq 1 \ orall \ j \leq k
ight\}. \end{aligned}$$

- $conv(\mathcal{Q}) = conv(\bigcup_{k=1}^{\nu+1} \mathcal{Q}_k) + \mathcal{C} \subseteq conv(\bigcup_{k=1}^{\nu+1} \mathcal{R}_k) + \mathcal{C}$
- This leads to a polynomial-size extended formulation that is exact in the cardinality constraint case.

Extended formulation

Kücükyavuz (2012):

- If (y^*, z^*) is an extreme point of conv (\mathcal{Q}) , then $y \in \{h_1, h_2, \dots, h_{\nu+1}\}$.
- For each $0 \le k \le \nu$, let

$$\begin{split} \mathcal{Q}_{k+1} &:= \left\{ (y,z) \in \{h_{k+1}\} \times \{0,1\}^n : \sum_{j \in [n]} a_j z_j \le p, z_j \ge 1 \,\,\forall \, j \le k \right\}.\\ \mathcal{R}_{k+1} &:= \left\{ (y,z) \in \{h_{k+1}\} \times [0,1]^n : \sum_{j \in [n]} a_j z_j \le p, z_j \ge 1 \,\,\forall \, j \le k \right\}. \end{split}$$

- $conv(\mathcal{Q}) = conv(\bigcup_{k=1}^{\nu+1} \mathcal{Q}_k) + \mathcal{C} \subseteq conv(\bigcup_{k=1}^{\nu+1} \mathcal{R}_k) + \mathcal{C}$
- This leads to a polynomial-size extended formulation that is exact in the cardinality constraint case.
- How strong is such extended formulation in the general case?

Extended formulation

Theorem (Abdi and F.)

Let EQ be the extended formulation obtained as described. Then

$$proj_{y,z}(EQ) \subseteq egin{cases} y+h_jz_j \geq h_j &, orall j=1,\dots,n \ \sum\limits_{j=1}^n a_jz_j \leq p \ y+\sum\limits_{j=1}^n lpha_jz_j \geq eta &, orall (lpha,eta) \in \mathcal{G}_1 \end{cases}$$

where G_1 is the set of coefficients of valid inequalities that are only allowed to have negative coefficients for all j such that $a_j = 1$.

Note: Using similar arguments, one can derive polynomial size extended formulations which have even better provable strength.

A better extended formulation

Bienstock (2008) gave polynomial-size formulations that have arbitrarily close gap to the convex hull of 0-1 solutions to the knapsack set. Can we use his results in this context?

A better extended formulation

Bienstock (2008) gave polynomial-size formulations that have arbitrarily close gap to the convex hull of 0-1 solutions to the knapsack set.

Can we use his results in this context?

Take M > 0 and let

$$\mathcal{G}_{\mathcal{M}} = \{(\alpha, \beta) \in \mathcal{G} : \alpha_j \ge -\mathcal{M}, \forall 1 \le j \le n\}.$$

A better extended formulation

Bienstock (2008) gave polynomial-size formulations that have arbitrarily close gap to the convex hull of 0-1 solutions to the knapsack set.

Can we use his results in this context?

Take M > 0 and let

$$\mathcal{G}_{M} = \{(\alpha, \beta) \in \mathcal{G} : \alpha_{j} \geq -M, \forall 1 \leq j \leq n\}.$$

Theorem (Abdi and F.)

For any M > 0 and $\epsilon > 0$ there exists a polyhedron \mathcal{RQ} such that $conv(\mathcal{Q}) \subset \mathcal{RQ}$, and if $(y^*, z^*) \in \mathcal{RQ}$ and $y + \sum_{j=1}^n \alpha_j z_j \ge \beta$ is a valid inequality of $conv(\mathcal{Q})$ whose coefficients, α_j , are bounded below by -M, then

$$y^* + \sum_{j=1}^n \alpha_j z_j^* \ge \beta - \epsilon M n.$$

Moreover, \mathcal{RQ} can be described explicitly as the projection of a polyhedron of dimension $O\left(\epsilon^{-1}n^{1+\lceil 1/\epsilon\rceil}\nu\right)$ that is described by $O\left(\epsilon^{-1}n^{2+\lceil 1/\epsilon\rceil}\nu\right)$ constraints.

Computational experiments

Computational experiments

Outline

Introduction

Our results

- Characterizing valid inequalities
- Separation over a large class of inequalities
- Explicit facet-defining inequalities
- Extended formulation

• Studied mixing set with a knapsack constraint

- Studied mixing set with a knapsack constraint
- Characterized valid inequalities that do not come from knapsack polytope

- Studied mixing set with a knapsack constraint
- Characterized valid inequalities that do not come from knapsack polytope
- Used it to derive polynomial-time separation of a large class of valid inequalities

- Studied mixing set with a knapsack constraint
- Characterized valid inequalities that do not come from knapsack polytope
- Used it to derive polynomial-time separation of a large class of valid inequalities
- Used it to generalize previous inequalities for the cardinality constrained case

- Studied mixing set with a knapsack constraint
- Characterized valid inequalities that do not come from knapsack polytope
- Used it to derive polynomial-time separation of a large class of valid inequalities
- Used it to generalize previous inequalities for the cardinality constrained case
- Extended formulation

- Studied mixing set with a knapsack constraint
- Characterized valid inequalities that do not come from knapsack polytope
- Used it to derive polynomial-time separation of a large class of valid inequalities
- Used it to generalize previous inequalities for the cardinality constrained case
- Extended formulation
- Future work:

- Studied mixing set with a knapsack constraint
- Characterized valid inequalities that do not come from knapsack polytope
- Used it to derive polynomial-time separation of a large class of valid inequalities
- Used it to generalize previous inequalities for the cardinality constrained case
- Extended formulation
- Future work:
 - Computational experiments

- Studied mixing set with a knapsack constraint
- Characterized valid inequalities that do not come from knapsack polytope
- Used it to derive polynomial-time separation of a large class of valid inequalities
- Used it to generalize previous inequalities for the cardinality constrained case
- Extended formulation
- Future work:
 - Computational experiments
 - Other classes of inequalities

- Studied mixing set with a knapsack constraint
- Characterized valid inequalities that do not come from knapsack polytope
- Used it to derive polynomial-time separation of a large class of valid inequalities
- Used it to generalize previous inequalities for the cardinality constrained case
- Extended formulation
- Future work:
 - Computational experiments
 - Other classes of inequalities
 - Other applications of the studied set

- Studied mixing set with a knapsack constraint
- Characterized valid inequalities that do not come from knapsack polytope
- Used it to derive polynomial-time separation of a large class of valid inequalities
- Used it to generalize previous inequalities for the cardinality constrained case
- Extended formulation
- Future work:
 - Computational experiments
 - Other classes of inequalities
 - Other applications of the studied set

Take away:

- Studied mixing set with a knapsack constraint
- Characterized valid inequalities that do not come from knapsack polytope
- Used it to derive polynomial-time separation of a large class of valid inequalities
- Used it to generalize previous inequalities for the cardinality constrained case
- Extended formulation
- Future work:
 - Computational experiments
 - Other classes of inequalities
 - Other applications of the studied set

Take away: Try to reduce the complexity of the negative part!

"The important thing is to realize the positive side and try to increase that; realize the negative side and try to reduce. That's the way."

Dalai Lama

"The important thing is to realize the positive side and try to increase that; realize the negative side and try to reduce. That's the way."

Dalai Lama

THANK YOU!