Benchmarking Non-First-Come-First-Served Component Allocation in an Assemble-To-Order System

Kai Huang

McMaster University

June 4, 2013

4 0 8

 QQQ

Table of Contents

[Introduction](#page-2-0)

2 [Non-First-Come-First-Served Component Allocation](#page-8-0)

- [Last-Come-First-Served-Within-One-Period \(LCFP\)](#page-8-0)
- [Product-Based-Priority-Within-Time-Windows \(PTW\)](#page-9-0)

[Demand Fulfillment Rates](#page-13-0)

- **[Demand Fulfillment Rates of the LCFP Rule](#page-13-0)**
- **[Demand Fulfillment Rates of the PTW Rule](#page-16-0)**

[Inventory Replenishment Policy](#page-18-0)

- [Base Stock Level Optimization of the LCFP Rule](#page-18-0)
- **[Base Stock Level Optimization of the PTW Rule](#page-21-0)**

5 [Benchmark Models](#page-25-0)

6 [Numerical Experiment](#page-28-0)

[Conclusions](#page-35-0)

• Two levels: Products and components.

4 日下

医心室 医心室

 \sim

• Two levels: Products and components.

• In the middle of single-echelon and two-echelon.

4 0 8

化重 经间

- **•** Assumptions:
	- ▶ Periodic review.

イロト イ押 トイヨ トイヨ

- Assumptions:
	- \blacktriangleright Periodic review.
	- \blacktriangleright Independent base stock policy for each component.

4 日下

- Assumptions:
	- \blacktriangleright Periodic review.
	- \blacktriangleright Independent base stock policy for each component.
	- ► Consignment policy: once a unit of component is assigned to an order, it is not available to other orders anymore even if it still stays in the inventory.

- Assumptions:
	- \blacktriangleright Periodic review.
	- \blacktriangleright Independent base stock policy for each component.
	- \triangleright Consignment policy: once a unit of component is assigned to an order, it is not available to other orders anymore even if it still stays in the inventory.
- Optimization problems:
	- \triangleright Base stock level optimization.
	- ▶ Component allocation optimization.

Last-Come-First-Served-Within-One-Period (LCFP)

• In a period, the unfulfilled orders come from $t_1, t_1 + 1, \dots, t - 1, t$:

- ► FCFS: Fulfill the orders in the sequence $t_1, t_1 + 1, \dots, t 1, t$.
- ► LCFP: Fulfill the orders in the sequence $t, t_1, t_1 + 1, \cdots, t 1$.

∢ ロ ≯ → イ印

 QQQ

Each product has a priority j and a time window w_j .

4 日下

- Each product has a priority j and a time window w_j .
- Product *i* can only be considered for fulfillment from period $t + w_i$ onward.

4 0 8

- Each product has a priority j and a time window w_j .
- Product *j* can only be considered for fulfillment from period $t + w_i$ onward.
- The fulfillment follows the priority list.

- Each product has a priority j and a time window w_j .
- Product *i* can only be considered for fulfillment from period $t + w_i$ onward.
- The fulfillment follows the priority list.
- Example: Let $w_1 = 0, w_2 = 1, w_3 = 2$. Then the sequence of satisfying the demands $P_{1,t}, P_{2,t}, P_{3,t}$ will be

$$
P_{1,t}, P_{2,t-1}, P_{3,t-2}, P_{1,t+1}, P_{2,t}, P_{3,t-1}, P_{1,t+2}, P_{2,t+1}, P_{3,t}.
$$

Demand Fulfillment Rates of the LCFP Rule

• The amount of inventory committed to the demand $D_{i,t}$ should be

$$
E_{i,t} = \text{Min}\{ (S_i - D_i[t-L_i-1, t-1])^+ + D_{i,t-L_i-1}, D_{i,t} \},
$$

while in FCFS, this amount is

$$
\text{Min}\{(S_i-D_i[t-L_i,t-1])^+, D_{i,t}\}.
$$

 QQQ

← ロ → → + 何 →

i ki≣i kiliki

Demand Fulfillment Rates of the LCFP Rule (Zero Time Window)

Lemma

The available on-hand inventory at the end of period t is $(S_i - D_i[t-L_i,t])^+$ under the LCFP rule, which is the same as that under the FCFS rule.

Theorem

The demand $D_{i,t}$ will be satisfied exactly in period t if and only if $(S_i - D_i[t-L_i-1, t-1])^+ + D_{i,t-L_i-1} \geq D_{i,t}$ under the LCFP rule.

 QQQ

→ イ母 ト イヨ ト イヨ

Demand Fulfillment Rates of the LCFP Rule (Positive Time Window)

Theorem

The demand $D_{i,t}$ will be satisfied within a time window $w \geq 1$ if and only if $(S_i - D_i[t - L_i - 1, t - 1])^+ + D_{i,t-L_i-1} \geq D_{i,t}$ (i.e. $E_{i,t} = D_{i,t}$), or, $(S_i - D_i[t - L_i - 1, t - 1])^+ + D_{i, t - L_i - 1} < D_{i, t}$ (i.e. $E_{i, t} < D_{i, t}$) and $S_i - D_i[t - L_i + w, t] - \sum_{s=1}^{w} E_{i,t+s} \ge 0$, under the LCFP rule.

 Ω

Demand Fulfillment Rates of the PTW Rule (Zero Time Window)

Theorem

When the PTW rule is applied, the net inventory just before satisfying the demand $a_{ij}P_{j,t}$ in period $t+w_j$ is:

$$
S_i - D_i[t - L_i + w_j, t - 1]
$$

-
$$
\sum_{k:k
+
$$
\sum_{k:k>j} \sum_{s:s < t, s+w_k \geq t+w_j} a_{ik} P_{k,s}.
$$
$$

Demand Fulfillment Rates of the PTW Rule (Positive Time Window)

Theorem

When the PTW rule is applied, the net inventory just before satisfying the demand $a_{ij}P_{j,t}$ in period $t+w_j+\delta_j$ is:

$$
S_i - D_i[t - L_i + w_j + \delta_j, t - 1] - \sum_{k:kj} \sum_{s:s < t,s+w_k \geq t+w_j} a_{ik} P_{k,s}.
$$

Base Stock Level Optimization of the LCFP Rule

$$
\operatorname{Min} \sum_{i \in \mathcal{M}} c_i S_i
$$

s.t. $P\{(S_i - D_i^{L_i+1})^+ + D_{i,t-L_i-1} \ge D_{i,t}, \forall i : a_{ij} > 0\} \ge \alpha_j \quad \forall j.$

Kai Huang (McMaster University) [Fields Institute](#page-0-0) June 4, 2013 12 / 26

ె≣ •ం∝్

イロト イ部 トイヨ トイヨト

Base Stock Level Optimization of the LCFP Rule

Observation

Assume the LCFP rule is applied, and the demands in the same period follow a multi-variate normal distribution, and the demands from different periods are i.i.d. Let $\mathcal X$ be defined as:

$$
\{S: P\{(S_i-D_i^{L_i+1})^+ + D_{i,t-L_i-1}\geq D_{i,t}, \forall i : a_{ij}>0\}\geq \alpha_j \quad \forall j\},\
$$

where $S=(S_i)_{i\in\mathcal{M}}\in\mathbb{R}_+^{|\mathcal{M}|}$ is the vector of nonnegative base stock levels. The set X is not necessarily convex.

つへへ

Illustration

Base stock Level Optimization of the PTW Rule

$$
\operatorname{Min} \sum_{i \in \mathcal{M}} c_i S_i
$$

$$
\text{s.t. } P\{X_{it}^j \leq S_i, \forall i : a_{ij} > 0\} \geq \alpha_j \quad \forall j.
$$

where

$$
X_{it}^{j} = D_{i}[t - L_{i} + w_{j}, t - 1] + \sum_{k:k \leq j} \sum_{0 \leq q \leq w_{j} - w_{k}} a_{ik} P_{k,t+q} - \sum_{k:k > j} \sum_{0 < q \leq w_{k} - w_{j}} a_{ik} P_{k,t-q}.
$$

Kai Huang (McMaster University) [Fields Institute](#page-0-0) Fields Institute June 4, 2013 15 / 26

目

 QQ

4 ロ ト 4 何 ト 4 ラ ト 4 ラ

Base stock Level Optimization of the PTW Rule

Theorem

Assume the PTW rule is applied, and the demands in the same period follow a multi-variate normal distribution, and the demands from different periods are i.i.d. Let $\mathcal X$ be defined as:

$$
\{S: P\{X_{it}^j\leq S_i, \forall i: a_{ij}>0\}\geq \alpha_j \quad \forall j\},\
$$

where $S=(S_i)_{i\in\mathcal{M}}\in\mathbb{R}_+^{|\mathcal{M}|}$ is the vector of nonnegative base stock levels. The set $\mathcal X$ is convex.

 Ω

Solution Strategies

Use the Sample Average Approximation algorithm to solve the base stock level optimization of the LCFP rule.

4.0.3

Solution Strategies

- Use the Sample Average Approximation algorithm to solve the base stock level optimization of the LCFP rule.
- Use a line search algorithm to solve the base stock level optimization of the PTW rule.

4 0 8

Observation of Component Allocation Optimizaiton under **FCFS**

Theorem

For a periodic review ATO system with component base stock policy and FCFS allocation, let x_{ik} be the number of product *j* assembled in period $t+k$ for the demand $P_{j,t}.$ Then the set of feasible component allocation decisions $x = (x_{ik})_{i,k}$ is characterized by:

$$
X = \{(x_{jk})_{j,k} : \begin{array}{l}\sum_{k=0}^{L+1} x_{jk} = P_{j,t} & \forall j \in \mathcal{N} \\ \sum_{\mu=0}^{k} \sum_{j=1}^{n} a_{ij} x_{j\mu} \leq O_i^k & \forall i \in \mathcal{M}, k < k^*, k \in \mathcal{L} \\ \sum_{\mu=0}^{k} \sum_{j=1}^{n} a_{ij} x_{j\mu} = D_{i,t} & \forall i \in \mathcal{M}, k \geq k^*, k \in \mathcal{L} \\ x_{jk} \in \mathbb{Z}_+ & \forall j \in \mathcal{N}, k \in \mathcal{L}\end{array}\}
$$

where $O_i^k = \text{Min}\{(S_i - D_i[t - L_i + k, t - 1])^+, D_{i,t}\}$ and $k^* = \min\{k \in \mathcal{L} : O_i^k = D_{i,t}\}$ and \mathbb{Z}_+ is the set of nonnegative integers.

 QQ

イロト イ押ト イラト イラト

Benchmark for the Demand Fulfillment Rates under FCFS

$$
C_1(S, \xi(\omega)) = \text{Min} \quad f_1(S, \xi(\omega), x, z)
$$
\n
$$
\text{s.t.} \quad P_{j,t} - \sum_{k=0}^{w_j} x_{jk} \le P_{j,t} z_j \quad \forall j \in \mathcal{N}
$$
\n
$$
z_j \in \{0, 1\} \qquad \forall j \in \mathcal{N}
$$
\n
$$
x \in X,
$$

where $z=(z_j)_{j\in\mathcal{N}}$ and $f_1(S,\xi(\omega),\mathsf{x},z)=\sum_{j=1}^n\frac{1}{n}z_j$.

 QQ

K ロ ▶ | K 伺 ▶ | K ヨ ▶

Benchmark for the Operational Costs under FCFS

$$
C_3(S,\xi(\omega)) = \text{Min} \t f_3(S,\xi(\omega),x)
$$

s.t. $x \in X$,

where

$$
f_3(S, \xi(\omega), x) = \sum_{i=1}^m h_i [(S_i - D_i^{L_i})^+ - \sum_{j=1}^n a_{ij} P_{j,t}]^+ + \sum_{i=1}^m \sum_{k=0}^{L+1} h_i (O_i^k - \sum_{\mu=0}^k \sum_{j=1}^n a_{ij} x_{j\mu}) + \sum_{j=1}^n \sum_{k=0}^{L+1} b_j (P_{j,t} - \sum_{\mu=0}^k x_{j\mu})
$$

Kai Huang (McMaster University) [Fields Institute](#page-0-0) Fields Institute June 4, 2013 20 / 26

← ロ ▶ → イ 冊

 \sim

э

Instances

Agrawal and Cohen (2001)

 \leftarrow \Box

 $AB + AB$

 \mathbf{p} 舌

 \rightarrow

 299

Instances

- Agrawal and Cohen (2001)
- Zhang (1997)

 \leftarrow \Box \rightarrow

∢● \rightarrow

一本 語 \rightarrow 一心 語 299

Instances

- Agrawal and Cohen (2001)
- Zhang (1997)
- Cheng et al. (2002)

4 日下

 \sim \leftarrow \equiv \sim -4

 \equiv

 2990

Performance Measure of the LCFP Rule

Figure : Comparison of demand fulfillment rates

4 0 8

Performance Measure of the LCFP Rule

Figure : Comparison of operatoinal costs

 \leftarrow

Performance Measure of the PTW Rule

Figure : Comparison of demand fulfillment rates

 \leftarrow

Performance Measure of the PTW Rule

Figure : Comparison of operational costs

 \leftarrow

Conclusions

The consignment property is the key in the analysis of the non-FCFS component allocation policies.

4 日下

Conclusions

- The consignment property is the key in the analysis of the non-FCFS component allocation policies.
- Chance-constrained programs naturally arise from ATO system optimization.

4 0 8

Conclusions

- The consignment property is the key in the analysis of the non-FCFS component allocation policies.
- Chance-constrained programs naturally arise from ATO system optimization.
- **•** The Sample Average Approximation algorithm is viable in solving small to medium instances.