Benchmarking Non-First-Come-First-Served Component Allocation in an Assemble-To-Order System

Kai Huang

McMaster University

June 4, 2013

Table of Contents

Introduction

2 Non-First-Come-First-Served Component Allocation

- Last-Come-First-Served-Within-One-Period (LCFP)
- Product-Based-Priority-Within-Time-Windows (PTW)

Demand Fulfillment Rates

- Demand Fulfillment Rates of the LCFP Rule
- Demand Fulfillment Rates of the PTW Rule

Inventory Replenishment Policy

- Base Stock Level Optimization of the LCFP Rule
- Base Stock Level Optimization of the PTW Rule

5 Benchmark Models

- Numerical Experiment
- 7 Conclusions

• Two levels: Products and components.

- 4 同 ト - 4 三 ト - 4 三

• Two levels: Products and components.

• In the middle of single-echelon and two-echelon.

→ ∃ →

- Assumptions:
 - Periodic review.

-

• • • • • • • • • • • •

- Assumptions:
 - Periodic review.
 - Independent base stock policy for each component.

- Assumptions:
 - Periodic review.
 - Independent base stock policy for each component.
 - Consignment policy: once a unit of component is assigned to an order, it is not available to other orders anymore even if it still stays in the inventory.

- Assumptions:
 - Periodic review.
 - Independent base stock policy for each component.
 - Consignment policy: once a unit of component is assigned to an order, it is not available to other orders anymore even if it still stays in the inventory.
- Optimization problems:
 - Base stock level optimization.
 - Component allocation optimization.

Last-Come-First-Served-Within-One-Period (LCFP)

• In a period, the unfulfilled orders come from $t_1, t_1 + 1, \cdots, t - 1, t$:

- FCFS: Fulfill the orders in the sequence $t_1, t_1 + 1, \cdots, t 1, t$.
- ▶ LCFP: Fulfill the orders in the sequence $t, t_1, t_1 + 1, \cdots, t 1$.

• Each product has a priority j and a time window w_j .

- Each product has a priority j and a time window w_j .
- Product j can only be considered for fulfillment from period $t + w_j$ onward.

- Each product has a priority j and a time window w_j .
- Product j can only be considered for fulfillment from period $t + w_j$ onward.
- The fulfillment follows the priority list.

- Each product has a priority j and a time window w_j .
- Product j can only be considered for fulfillment from period $t + w_j$ onward.
- The fulfillment follows the priority list.
- Example: Let $w_1 = 0, w_2 = 1, w_3 = 2$. Then the sequence of satisfying the demands $P_{1,t}, P_{2,t}, P_{3,t}$ will be

$$P_{1,t}, P_{2,t-1}, P_{3,t-2}, P_{1,t+1}, P_{2,t}, P_{3,t-1}, P_{1,t+2}, P_{2,t+1}, P_{3,t}.$$

Demand Fulfillment Rates of the LCFP Rule

• The amount of inventory committed to the demand $D_{i,t}$ should be

$$E_{i,t} = \min\{(S_i - D_i[t - L_i - 1, t - 1])^+ + D_{i,t-L_i-1}, D_{i,t}\},\$$

while in FCFS, this amount is

$$\min\{(S_i - D_i[t - L_i, t - 1])^+, D_{i,t}\}.$$

Demand Fulfillment Rates of the LCFP Rule (Zero Time Window)

Lemma

The available on-hand inventory at the end of period t is $(S_i - D_i[t - L_i, t])^+$ under the LCFP rule, which is the same as that under the FCFS rule.

Theorem

The demand $D_{i,t}$ will be satisfied exactly in period t if and only if $(S_i - D_i[t - L_i - 1, t - 1])^+ + D_{i,t-L_i-1} \ge D_{i,t}$ under the LCFP rule.

- 4 @ > - 4 @ > - 4 @ >

Demand Fulfillment Rates of the LCFP Rule (Positive Time Window)

Theorem

The demand $D_{i,t}$ will be satisfied within a time window $w \ge 1$ if and only if $(S_i - D_i[t - L_i - 1, t - 1])^+ + D_{i,t-L_i-1} \ge D_{i,t}$ (i.e. $E_{i,t} = D_{i,t}$), or, $(S_i - D_i[t - L_i - 1, t - 1])^+ + D_{i,t-L_i-1} < D_{i,t}$ (i.e. $E_{i,t} < D_{i,t}$) and $S_i - D_i[t - L_i + w, t] - \sum_{s=1}^{w} E_{i,t+s} \ge 0$, under the LCFP rule.

イロト イヨト イヨト

Demand Fulfillment Rates of the PTW Rule (Zero Time Window)

Theorem

When the PTW rule is applied, the net inventory just before satisfying the demand $a_{ij}P_{j,t}$ in period $t + w_j$ is:

$$S_{i} - D_{i}[t - L_{i} + w_{j}, t - 1]$$

- $\sum_{k:k < j} \sum_{s:s \ge t, s+w_{k} \le t+w_{j}} a_{ik}P_{k,s}$
+ $\sum_{k:k > j} \sum_{s:s < t, s+w_{k} \ge t+w_{j}} a_{ik}P_{k,s}.$

Demand Fulfillment Rates of the PTW Rule (Positive Time Window)

Theorem

When the PTW rule is applied, the net inventory just before satisfying the demand $a_{ij}P_{j,t}$ in period $t + w_j + \delta_j$ is:

$$S_{i} - D_{i}[t - L_{i} + w_{j} + \delta_{j}, t - 1]$$

- $\sum_{k:k < j} \sum_{s:s \ge t, s+w_{k} \le t+w_{j}} a_{ik} P_{k,s}$
+ $\sum_{k:k > j} \sum_{s:s < t, s+w_{k} \ge t+w_{j}} a_{ik} P_{k,s}.$

Base Stock Level Optimization of the LCFP Rule

$$\operatorname{Min} \sum_{i \in \mathcal{M}} c_i S_i$$

s.t. $P\{(S_i - D_i^{L_i+1})^+ + D_{i,t-L_i-1} \ge D_{i,t}, \forall i : a_{ij} > 0\} \ge \alpha_j \quad \forall j.$

Kai Huang (McMaster University)

Fields Institute

▶ ◀ Ē ▶ Ē ∽ ⌒ June 4, 2013 12 / 26

Image: A match a ma

Base Stock Level Optimization of the LCFP Rule

Observation

Assume the LCFP rule is applied, and the demands in the same period follow a multi-variate normal distribution, and the demands from different periods are i.i.d. Let \mathcal{X} be defined as:

$$\{S: P\{(S_i - D_i^{L_i+1})^+ + D_{i,t-L_i-1} \ge D_{i,t}, \forall i: a_{ij} > 0\} \ge \alpha_j \quad \forall j\},\$$

where $S = (S_i)_{i \in \mathcal{M}} \in \mathbb{R}_+^{|\mathcal{M}|}$ is the vector of nonnegative base stock levels. The set \mathcal{X} is not necessarily convex.

Illustration

Base stock Level Optimization of the PTW Rule

$$\operatorname{Min}\sum_{i\in\mathcal{M}}c_iS_i$$

s.t.
$$P\{X_{it}^j \leq S_i, \forall i : a_{ij} > 0\} \geq \alpha_j \quad \forall j.$$

where

$$\begin{array}{lll} X_{it}^{j} & = & D_{i}[t-L_{i}+w_{j},t-1] \\ & & +\sum_{k:k\leq j}\sum_{0\leq q\leq w_{j}-w_{k}}a_{ik}P_{k,t+q} \\ & & -\sum_{k:k>j}\sum_{0< q\leq w_{k}-w_{j}}a_{ik}P_{k,t-q}. \end{array}$$

Kai Huang (McMaster University)

Image: A math a math

Base stock Level Optimization of the PTW Rule

Theorem

Assume the PTW rule is applied, and the demands in the same period follow a multi-variate normal distribution, and the demands from different periods are i.i.d. Let \mathcal{X} be defined as:

$$\{S: P\{X_{it}^j \leq S_i, \forall i: a_{ij} > 0\} \geq \alpha_j \quad \forall j\},\$$

where $S = (S_i)_{i \in \mathcal{M}} \in \mathbb{R}_+^{|\mathcal{M}|}$ is the vector of nonnegative base stock levels. The set \mathcal{X} is convex.

Solution Strategies

• Use the Sample Average Approximation algorithm to solve the base stock level optimization of the LCFP rule.

Solution Strategies

- Use the Sample Average Approximation algorithm to solve the base stock level optimization of the LCFP rule.
- Use a line search algorithm to solve the base stock level optimization of the PTW rule.

Observation of Component Allocation Optimizaiton under FCFS

Theorem

For a periodic review ATO system with component base stock policy and FCFS allocation, let x_{jk} be the number of product j assembled in period t + k for the demand $P_{j,t}$. Then the set of feasible component allocation decisions $x = (x_{jk})_{j,k}$ is characterized by:

$$X = \{(x_{jk})_{j,k} : \begin{array}{ll} \sum_{k=0}^{L+1} x_{jk} = P_{j,t} & \forall j \in \mathcal{N} \\ \sum_{\mu=0}^{k} \sum_{j=1}^{n} a_{ij} x_{j\mu} \leq O_i^k & \forall i \in \mathcal{M}, k < k^*, k \in \mathcal{L} \\ \sum_{\mu=0}^{k} \sum_{j=1}^{n} a_{ij} x_{j\mu} = D_{i,t} & \forall i \in \mathcal{M}, k \geq k^*, k \in \mathcal{L} \\ x_{jk} \in \mathbb{Z}_+ & \forall j \in \mathcal{N}, k \in \mathcal{L} \end{array} \},$$

where $O_i^k = Min\{(S_i - D_i[t - L_i + k, t - 1])^+, D_{i,t}\}$ and $k^* = Min\{k \in \mathcal{L} : O_i^k = D_{i,t}\}$ and \mathbb{Z}_+ is the set of nonnegative integers.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Benchmark for the Demand Fulfillment Rates under FCFS

$$\begin{array}{lll} C_1(S,\xi(\omega)) &=& \mathrm{Min} & f_1(S,\xi(\omega),x,z) \\ && \mathrm{s.t.} & P_{j,t} - \sum_{k=0}^{w_j} x_{jk} \leq P_{j,t} z_j & \forall j \in \mathcal{N} \\ && z_j \in \{0,1\} & \forall j \in \mathcal{N} \\ && x \in X, \end{array}$$

where $z = (z_j)_{j \in \mathcal{N}}$ and $f_1(S, \xi(\omega), x, z) = \sum_{j=1}^n \frac{1}{n} z_j$.

Benchmark for the Operational Costs under FCFS

$$\begin{array}{rcl} C_3(S,\xi(\omega)) &=& \mathrm{Min} & f_3(S,\xi(\omega),x) \\ && \mathrm{s.t.} & x \in X, \end{array}$$

where

$$f_{3}(S,\xi(\omega),x) = \sum_{i=1}^{m} h_{i}[(S_{i} - D_{i}^{L_{i}})^{+} - \sum_{j=1}^{n} a_{ij}P_{j,t}]^{+} \\ + \sum_{i=1}^{m} \sum_{k=0}^{L+1} h_{i}(O_{i}^{k} - \sum_{\mu=0}^{k} \sum_{j=1}^{n} a_{ij}x_{j\mu}) \\ + \sum_{j=1}^{n} \sum_{k=0}^{L+1} b_{j}(P_{j,t} - \sum_{\mu=0}^{k} x_{j\mu})$$

Kai Huang (McMaster University)

June 4, 2013 20 / 26

Instances

• Agrawal and Cohen (2001)

Image: A match a ma

Instances

- Agrawal and Cohen (2001)
- Zhang (1997)

-

Instances

- Agrawal and Cohen (2001)
- Zhang (1997)
- Cheng et al. (2002)

-

▲ @ ▶ < ∃ ▶</p>

Performance Measure of the LCFP Rule

Figure : Comparison of demand fulfillment rates

Performance Measure of the LCFP Rule

Figure : Comparison of operatoinal costs

Performance Measure of the PTW Rule

Figure : Comparison of demand fulfillment rates

Performance Measure of the PTW Rule

Figure : Comparison of operational costs

Conclusions

• The consignment property is the key in the analysis of the non-FCFS component allocation policies.

Conclusions

- The consignment property is the key in the analysis of the non-FCFS component allocation policies.
- Chance-constrained programs naturally arise from ATO system optimization.

Conclusions

- The consignment property is the key in the analysis of the non-FCFS component allocation policies.
- Chance-constrained programs naturally arise from ATO system optimization.
- The Sample Average Approximation algorithm is viable in solving small to medium instances.