

# Inventory Pinch Algorithms for Gasoline Blending

# Fields Institute Industrial Seminars March 19, 2013 V. Mahalec, McMaster University





- Brief overview of gasoline blending & current solution approaches
- Inventory Pinch concept
- Multiperiod inventory pinch algorithm for blend planning
- Single period inventory pinch algorithm for blend planning
- Extensions to scheduling and general production planning
- Conclusions

# Why gasoline blending?

McMaster University

- From industrial viewpoint:
  - Important component of refinery profits.
- From academic viewpoint:
  - Small, easy to understand model of the physical system.
    - Linear, bilinear, or highly nonlinear
  - Multiple optima
  - Knowledge gained about gasoline blending is often directly applicable to more complex process plants.

# Sample Gasoline Blending System



# MCMASTE1

# How Much to Produce and When for Each Product? Iniversity

#### **Discrete time approach**



#### **Continuous time approach**



K slots on each unit (component tank, blender, or product tank)

more likely is that a feasible schedule can be created.

Solve simultaneously for start/end of each blend and for the blend recipe.

Li and Karimi, IEC Research, 2011, pp. 9156-9174

# **Discrete Time: Opening and Closing Inventory**



University

# **Discrete Time: Inventory Connects Time Periods**

University



# **Blending Model: Inventory Constraints**



• Volumetric balance - components

$$V_{C,K}^{close}(i) = V_{C,K}^{open}(i) + V_{C,K}^{in}(i) - \sum_{g} V_{C,K}(i,g) + S_{C,K}^{+}(i) - S_{C,K}^{-}(i)$$

- Inventory constraints components  $V_{C}^{\min}(i) \leq V_{C,K}^{close}(i) \leq V_{C}^{\max}(i)$
- Volumetric balance products  $V_{P,K}^{close}(g) = V_{P,K}^{open}(g) + V_{B,K}(g) - D_{P,K}(g) + S_{P,K}^{+}(g) - S_{P,K}^{-}(g)$
- Inventory constraints products

 $V_{P}^{\min}(g) \leq V_{P,K}^{close}(g) \leq V_{P}^{\max}(g)$ 

# **Blending model: Quality constraints**



- Quality\*volume (for properties blended linearly)  $Q_{P}^{\min}(g,s) \cdot V_{B,K}(g,k) \leq \sum_{i} Q_{C}(i,s) \cdot V_{C,K}(i,g,k) \leq Q_{P}^{\max}(g,s) \cdot V_{B,K}(g,k)$
- Non-linear quality constraints, e.g. RVP  $Q_{P,K}(g, s = RVP) = \left[\sum_{i=1}^{I} x_K(i, g) \cdot \left(Q_C(i, s = RVP)\right)^{1.25}\right]^{0.8}$
- Total blend volumes

 $\mathbf{V}_{\mathrm{C},\mathrm{K}}(i,g) - x_{\mathrm{K}}(i,g) \cdot \mathbf{V}_{\mathrm{B},\mathrm{K}}(g) = 0$ 

$$\sum_{i} \mathbf{x}_{\mathrm{K}}(i,g) = 1$$

# **Blending model: integer constraints**

McMaster

- Threshold production:
  - If grade "g" is blended in period "k" then the amount blended has to be greater than or equal to the "threshold amount".
  - If grade "g" is blended, then there is a set-up time (lost production capacity) associated with it.
- Not included:
  - Minimize switches (i.e. continue blending "A" in "k+1" if that was the last thing done in "k" and if A needs to be blended in "k+1")

## **Discrete Time Approach**



- Increasing number of periods leads to a rapid increase in MINLP solution times.
- Coarse time periods often lead to solutions that are intraperiod infeasible.
- As a rule, each period has blend recipes that are different from the recipes in the adjacent periods.
- There are many optimal solutions (with the same value of the objective function; globally optimal).
- Different solvers arrive at the same value of the objective function but the solution are different.

#### Questions that we want to answer:



- How long can we keep the bend recipe constant along the planning horizon?
  - Does this have anything to do with supply/demand pinch?
- How to exploit existence of intervals with constant blend recipes to reduce computational times at the planning level and compute production plans that are feasible?
- How to exploit such intervals in scheduling?
- Are there wider implications for process plants production planning and scheduling?

#### **Total Demand vs. Production Capacity**





# **Optimal Solution**





# Hypothesis





### **Inventory Pinch Point Definition**





# Multi-Period Inventory Pinch Algorithm for Production Planning





# Multi-Period Inventory Pinch Algorithm for Production Planning



#### Inventory pinch multiperiod model



Pinch points determine period boundaries. If operation is infeasible, pinch-delimited period is subdivided.

Blend recipes and volumes to blend in each t-period.



Infeasibility (if any) info: Where to subdivide t-period



Constraints:

- Minimum blend size threshold .
- Inventory constraints.

If operation is infeasible, identify the lperiod where infeasible. Subdivide tperiod at that point. Lower Level: Determine best feasible solution

University

"Push" product inventory infeasibilities as far forward as possible, i.e.

$$\min\left\{\sum_{n}\left(\sum_{g}\left(S_{P}^{+}(g,n)+S_{P}^{-}(g,n)\right)\times Penalty_{P}(g,n)\right)\right\}$$

 $Penalty_P(g,n) >> Penalty_P(g,n+1)$ 

$$V_{\rm P}^{\rm close}(g,n) = V_{\rm P}^{\rm open}(g,n) + V_{B}(g,n) - D_{P}(g,n) + S_{\rm P}^{+}(g,n) - S_{\rm P}^{-}(g,n)$$

# **Case Study**











— U87 – · U91 •••• U93 – – Minimum Level

# **Case Study /t-periods for iteration 2**





# **Case Study / Product Inventory – Iteration 2**



McMaster

# Case Study / Top Level: Optimal Blend Recipes

| 1st Iteration     |             |        |        |        |               |        |         |        |        |        |        |        |        |  |
|-------------------|-------------|--------|--------|--------|---------------|--------|---------|--------|--------|--------|--------|--------|--------|--|
| Time              | Time period |        | k1     |        |               |        |         |        | k2     |        |        | k3     |        |  |
| Gasoline Grade    |             | U87    |        | U91    |               | U      | U93     |        | U91    | U93    | U87    | U91    | U93    |  |
|                   | ALK         | 0.1568 |        | 0.2467 |               | 0.1    | 0.1846  |        | 0.2461 | 0.1848 | 0.0079 | 0.1418 | 0.0975 |  |
|                   | BUT         | 0.0262 |        | 0.0363 |               | 0.0    | 0.0438  |        | 0.0361 | 0.0434 | 0.0204 | 0.0345 | 0.0407 |  |
| Dlanding          | HCL         | 0.0258 |        | 0.0    | 0.028         |        | 0.0265  | 0.0351 | 0.0243 | 0      | 0      | 0      |        |  |
| Blending<br>Comp. | HCN         | 0.0437 |        | 0.0    | 0.0651 0.0514 |        | 514     | 0.052  | 0.065  | 0.0475 | 0.0007 | 0.0033 | 0.0013 |  |
| comp.             | LCN         | 0.2573 |        | 0.1    | .192 0.1378   |        | 378     | 0.2925 | 0.2081 | 0.1517 | 0.3933 | 0.1849 | 0.1856 |  |
|                   | LNP         | 0.18   |        | 0.0    | 0.0242        |        | 0.1678  | 0.0674 | 0.0244 | 0.2126 | 0.1472 | 0.0712 |        |  |
|                   | RFT         | 0.3102 |        | 0.3515 |               | 0.5302 |         | 0.2863 | 0.3421 | 0.5238 | 0.3651 | 0.4883 | 0.6037 |  |
|                   |             |        |        |        |               | 2nd It | eration |        |        |        |        |        |        |  |
| Time              | period      |        | k1'    |        |               | k1''   |         |        | k2     |        |        | k3     |        |  |
| Gasolin           | ne Grade    | U87    | U91    | U93    | U87           | U91    | U93     | U87    | U91    | U93    | U87    | U91    | U93    |  |
|                   | ALK         | 0.1498 | 0.2446 | 0.1902 | 0.1644        | 0.2432 | 0.1795  | 0.1492 | 0.2463 | 0.1849 | 0.008  | 0.1415 | 0.0976 |  |
|                   | BUT         | 0.0257 | 0.0351 | 0.043  | 0.0272        | 0.0373 | 0.0443  | 0.0256 | 0.0361 | 0.0435 | 0.0204 | 0.0344 | 0.0407 |  |
| Planding          | HCL         | 0.0208 | 0.0277 | 0.0243 | 0.0332        | 0.0514 | 0.031   | 0.0259 | 0.0345 | 0.024  | 0      | 0      | 0      |  |
| Blending<br>Comp. | HCN         | 0.0255 | 0.0359 | 0.0367 | 0.0711        | 0.0898 | 0.0612  | 0.0522 | 0.0652 | 0.0476 | 0.0008 | 0.0027 | 0.0016 |  |
|                   | LCN         | 0.2513 | 0.2117 | 0.1541 | 0.2548        | 0.1705 | 0.1265  | 0.2925 | 0.2082 | 0.1519 | 0.3917 | 0.1873 | 0.1863 |  |
|                   | LNP         | 0.1947 | 0.0849 | 0.0275 | 0.1617        | 0.0572 | 0.0221  | 0.1681 | 0.0676 | 0.0244 | 0.213  | 0.147  | 0.0708 |  |
|                   | RFT         | 0.3321 | 0.3601 | 0.524  | 0.2876        | 0.3506 | 0.5354  | 0.2865 | 0.342  | 0.5237 | 0.3661 | 0.4872 | 0.6029 |  |

University

# Volumes to Blend at the Top Level



|             |           | Volumes to blend (BBL)  |        |           |  |  |  |  |  |
|-------------|-----------|-------------------------|--------|-----------|--|--|--|--|--|
|             |           | 1st Iteration (infeasib | le)    |           |  |  |  |  |  |
| Gasol       | ine Grade | U87                     | U91    | U93       |  |  |  |  |  |
|             | k1        | 470                     | 230    | 185       |  |  |  |  |  |
| Time nation | k2        | 50                      | 30     | 30<br>160 |  |  |  |  |  |
| Time period | k3        | 260                     | 130    |           |  |  |  |  |  |
|             | Total     | 780                     | 390    | 375       |  |  |  |  |  |
|             |           | 2nd Iteration (feasibl  | e)     |           |  |  |  |  |  |
| Gasol       | ine Grade | U87                     | U91    | U93       |  |  |  |  |  |
|             | k1        | 217.89                  | 144.97 | 107.98    |  |  |  |  |  |
|             | k2        | 252.11                  | 85.03  | 77.02     |  |  |  |  |  |
| Time period | k3        | 50                      | 30     | 30        |  |  |  |  |  |
|             | k4        | 260                     | 130    | 160       |  |  |  |  |  |
|             | Total     | 780                     | 390    | 375       |  |  |  |  |  |

# Summary of Case Studies – Multiperiod Inventory Pinch



| Case  | Supply    |                                                | Solution<br>Model)    | Multi-Period Inventory Pinch<br>Algorithm Solution (IPOPT,<br>CPLEX) |                       |            |  |
|-------|-----------|------------------------------------------------|-----------------------|----------------------------------------------------------------------|-----------------------|------------|--|
| Study | rate      | Objective<br>Function<br>(×10 <sup>3</sup> \$) | Total CPU<br>time (s) | Objective<br>Function<br>(×10 <sup>3</sup> \$)                       | Total CPU<br>time (s) | Iterations |  |
| 1     | Regular   | 37,542.2                                       | 13.879                | 37,542.5                                                             | 2.200                 | 1          |  |
| 2     | Regular   | 38,120.9                                       | 99.444                | 38,121.2                                                             | 1.913                 | 1          |  |
| 3     | Regular   | 38,309.6                                       | 11.582                | 38,309.9                                                             | 0.956                 | 1          |  |
| 4     | Regular   | 37,990.9                                       | 12.495                | 37,991.1                                                             | 1.089                 | 1          |  |
| 5     | Regular   | 37,863.9                                       | 7.041                 | 37,864.2                                                             | 1.005                 | 1          |  |
| 6     | Regular   | 37,680.3                                       | 17.208                | 37,680.6                                                             | 0.990                 | 1          |  |
| 7     | Regular   | 37,324.0                                       | 17.228                | 37,324.5                                                             | 7.825                 | 4          |  |
| 8     | Regular   | 37,761.5                                       | 7.679                 | 37,761.8                                                             | 1.548                 | 1          |  |
| 9     | Regular   | 37,377.2                                       | 14.520                | 37,377.5                                                             | 1.203                 | 1          |  |
| 10    | Irregular | 37,943.1                                       | 14.387                | 37,943.4                                                             | 0.863                 | 1          |  |
| 11    | Irregular | 38,518.2                                       | 17.738                | 38,518.5                                                             | 1.019                 | 1          |  |
| 12    | Irregular | 38,753.9                                       | 14.635                | 38,754.2                                                             | 2.531                 | 2          |  |
| 13    | Irregular | 38,405.0                                       | 22.266                | 38,405.3                                                             | 1.076                 | 1          |  |
| 14    | Irregular | 38,195.7                                       | 14.161                | 38,196.0                                                             | 1.331                 | 1          |  |
| 15    | Irregular | 38,073.1                                       | 18.715                | 38,073.4                                                             | 1.156                 | 1          |  |
| 16    | Irregular | 37,784.2                                       | 21.872                | 37,784.5                                                             | 2.497                 | 2          |  |
| 17    | Irregular | 38,192.3                                       | 15.586                | 38,192.6                                                             | 1.344                 | 1          |  |
| 18    | Irregular | 37,796.2                                       | 14.432                | 37,796.5                                                             | 1.521                 | 1          |  |



• Can we solve a series of single period NLPs at the top level and still get the optimal solution?

# Single-Period vs. Multi-Period Inventory Pinch Algorithms for Production Planning

#### Inv. pinch multiperiod algorithm



#### Inv. pinch single period algorithm





- 1. Solve at the top level a separate NLP for each t-period.
- 2. Solve at the lower level a MINLP for the entire planning horizon.
- 3. If feasible, STOP. Otherwise:
- 4. Positive slacks on the product inventory shows how much more product needs to be produced in the previous period:
  - Increase the amount to be produced in the previous t-period by that increment.
  - Decrease amount to be produced in the current t-period by the same amount.
  - Subdivide t-period.
  - Go to 1.

# **Example:** Two Blenders System





System structure is represented at the lower level (MILP).

# **Problem Size**



| Model                           | # Equations | # Continuous<br>Variables | # Discrete<br>Variables | # Non-zeros |
|---------------------------------|-------------|---------------------------|-------------------------|-------------|
| MINLP model                     | 1,723       | 1,275                     | 42                      | 7,187       |
| (1 blender, 14 time periods)    | 1,725       | 1,275                     | 42                      | 7,107       |
| MINLP model                     | 2.005       | 1 0 0 0                   | 0.4                     | 12.002      |
| (2 blenders, 14 time periods)   | 2,885       | 1,989                     | 84                      | 12,983      |
| NLP model                       |             |                           |                         |             |
| (MPIP algorithm, 2 time         | 231         | 171                       | 0                       | 869         |
| periods)                        |             |                           |                         |             |
| NLP model                       | 100         | 70                        | •                       | 402         |
| (SPIP algorithm)                | 106         | 76                        | 0                       | 403         |
| MILP model                      |             |                           |                         |             |
| (1 blender, 14 time periods, 2  | 1,267       | 939                       | 42                      | 3,203       |
| fixed recipes)                  |             |                           |                         |             |
| MILP model                      |             |                           |                         |             |
| (2 blenders, 14 time periods, 2 | 1,967       | 1,317                     | 84                      | 5,009       |
| fixed recipes)                  |             |                           |                         |             |

# **Case Study / 2 Blenders**





## **Case Study / Product & Component Inventories**



**Product Inventories** 

**Component Inventories** 

University

# Summary of Case Studies – Single Period Inventory Pinch

| Case  | Number of | Initial<br>Product | RVP<br>Blend | DICOPT<br>(MINLI                               | Solution<br>Model)    | Single-Period Inventory Pinch<br>Algorithm Solution (IPOPT,<br>CPLEX) |                       |            |  |
|-------|-----------|--------------------|--------------|------------------------------------------------|-----------------------|-----------------------------------------------------------------------|-----------------------|------------|--|
| Study | blenders  | Inventory          | Property     | Objective<br>Function<br>(×10 <sup>3</sup> \$) | Total CPU<br>time (s) | Objective<br>Function<br>(×10 <sup>3</sup> \$)                        | Total CPU<br>time (s) | Iterations |  |
| 19    | 1         | On-Spec            | Linear       | 43420.2                                        | 12.26                 | 43421.74                                                              | 4.2                   | 2          |  |
| 20    | 1         | On-Spec            | Linear       | 41349.62                                       | 29.08                 | 41350.01                                                              | 1.23                  | 1          |  |
| 21    | 1         | On-Spec            | Linear       | 43161.03                                       | 37.69                 | 43161.34                                                              | 1.4                   | 1          |  |
| 21    | 2         | On-Spec            | Linear       | 43161.05                                       | 63.52                 | 43161.33                                                              | 1.5                   | 1          |  |
| 22    | 1         | On-Spec            | Linear       | 41874.17                                       | 20.53                 | 41874.44                                                              | 1.36                  | 1          |  |
| 22    | 2         | On-Spec            | Linear       | 41874.45                                       | 115.15                | 41874.45                                                              | 2.75                  | 1          |  |
| 23    | 1         | On-Spec            | Nonlinear    | 43657.71                                       | 13.84                 | 43658                                                                 | 0.98                  | 1          |  |
| 24    | 1         | On-Spec            | Nonlinear    | 43611.69                                       | 12.81                 | 43611.97                                                              | 2.19                  | 2          |  |
| 25    | 1         | On-Spec            | Nonlinear    | 43611.69                                       | 33.2                  | 43611.98                                                              | 1.08                  | 1          |  |
| 25    | 2         | On-Spec            | Nonlinear    | 43611.69                                       | 34.64                 | 43611.97                                                              | 1.19                  | 1          |  |
| 26    | 1         | On-Spec            | Nonlinear    | 43934.67                                       | 18.51                 | 43934.95                                                              | 1.71                  | 1          |  |
| 26    | 2         | On-Spec            | Nonlinear    | 43934.95                                       | 82.32                 | 43934.95                                                              | 2.04                  | 1          |  |
| 27    | 1         | On-Spec            | Nonlinear    | 43627.27                                       | 372.59                | 43627.45                                                              | 8.77                  | 5          |  |
| 27    | 1         | On-Spec            | Linear       | 43142.09                                       | 424.95                | 43142.25                                                              | 7.8                   | 5          |  |
| 28    | 1         | On-Spec            | Nonlinear    | 43611.69                                       | 641.76                | 43667.68                                                              | 5.02                  | 3          |  |
| 28    | 1         | On-Spec            | Linear       | 43101.12                                       | 235.61                | 43126.28                                                              | 4.33                  | 3          |  |
| 29    | 1         | Off-Spec           | Linear       | 43424.87                                       | 15.17                 | 43425.15                                                              | 2.87                  | 1          |  |
| 30    | 1         | Off-Spec           | Linear       | 41470.45                                       | 7.73                  | 41470.74                                                              | 3.05                  | 1          |  |
| 30    | 2         | Off-Spec           | Linear       | 41470.45                                       | 56.87                 | 41470.74                                                              | 3.57                  | 1          |  |

# Comparison: Multi-period MINLP vs. Multi-Period & Single Period Inventory Pinch Algorithms

|         | Number | Initial                  | RVP       | DICOPT Solution<br>(MINLP model)                   |                          | Pinch A                                            | Period In<br>lgorithm S<br>OPT, CPL | Solution        | Multi-Period Inventory Pinch<br>Algorithm Solution (IPOPT,<br>CPLEX) |                          |                |
|---------|--------|--------------------------|-----------|----------------------------------------------------|--------------------------|----------------------------------------------------|-------------------------------------|-----------------|----------------------------------------------------------------------|--------------------------|----------------|
| Case of |        | Product<br>Inventor<br>y | Blend     | Objectiv<br>e<br>Function<br>(×10 <sup>3</sup> \$) | Total<br>CPU<br>time (s) | Objectiv<br>e<br>Function<br>(×10 <sup>3</sup> \$) | Total<br>CPU<br>time (s)            | Ite ration<br>s | Objective<br>Function<br>(×10 <sup>3</sup> \$)                       | Total<br>CPU<br>time (s) | Iteration<br>s |
| 22      | 1      | On-Spec                  | Linear    | 41874.17                                           | 20.53                    | 41874.44                                           | 1.36                                | 1               | 41874.45                                                             | 0.864                    | 1              |
| 22      | 2      | On-Spec                  | Linear    | 41874.45                                           | 115.15                   | 41874.45                                           | 2.75                                | 1               | 41874.45                                                             | 1.178                    | 1              |
| 26      | 1      | On-Spec                  | Nonlinear | 43934.67                                           | 18.51                    | 43934.95                                           | 1.71                                | 1               | 43934.95                                                             | 1.777                    | 1              |
| 26      | 2      | On-Spec                  | Nonlinear | 43934.95                                           | 82.32                    | 43934.95                                           | 2.04                                | 1               | 43934.95                                                             | 2.117                    | 1              |
| 27      | 1      | On-Spec                  | Nonlinear | 43627.27                                           | 372.59                   | 43627.45                                           | 8.77                                | 5               | 43627.56                                                             | 2.058                    | 2              |
| 27      | 1      | On-Spec                  | Linear    | 43142.09                                           | 424.95                   | 43142.25                                           | 7.8                                 | 5               | 43142.37                                                             | 2.23                     | 2              |
| 28      | 1      | On-Spec                  | Nonlinear | 43611.69                                           | 641.76                   | 43667.68                                           | 5.02                                | 3               | 43611.97                                                             | 0.852                    | 1              |
| 28      | 1      | On-Spec                  | Linear    | 43101.12                                           | 235.61                   | 43126.28                                           | 4.33                                | 3               | 43101.4                                                              | 0.86                     | 1              |

**Preliminary conclusion:** Increase from 1 to 2 blenders leads to 4+ times higher execution times with DICOPT. MPIP increase is less than 15.

# **Previous related work**



#### **Glismann and Gruhn**



- Calendar based periods
- Many different blend recipes in MINLP
- Scheduling based on fixed duration (2hr) periods. Multiple choices of fixed recipes if infeasibility encountered.

#### Inventory pinch multiperiod model



# Scheduling



- We do not have completed the studies.
- Possibility:
  - Can we combine the best of both worlds:
    - Discreet-time inventory pinch delimited planning
    - Continuous time scheduling (with fixed recipes)

AND have very short execution times.

# Does it work for process plants (e.g. refinery) planning?

- Expectation: YES
- Work remains to be completed.
- Impact on practice:
  - Non-linear, computationally intensive models of the plants to be used for production planning with execution times that are much shorter than with the "calendar set" time periods.

# Conclusions / 1



- Inventory pinch enables a new decomposition of linear and non-linear (gasoline) production planning problems.
- Multi-period inventory pinch algorithm:
  - Computes the same optimal value of the objective function as MINLP.
  - Compared to multi-period MINLP, the algorithm substantially reduces number of different operating conditions (blend recipes) at which the system needs to operate.
  - Computational times are substantially lower than multiperiod MINLP.
    - Will this lead to more elaborate (more detailed) non-linear refinery production planning (or multi-refinery planning) models?
- Extension to scheduling is yet to be explored.
  - Will this enable us to combine the best of discrete-time and continuous-time approaches?

# Conclusions / 2



- Single period inventory pinch algorithm computes objective function optimums that are in most cases identical to multiperiod MINLP.
  - If not optimal, the difference is very small.
  - Is there a way to modify the algorithm to guarantee optimality?
- Is there potential to use existing rigorous simulation and optimization (single period) software for production planning?

# Acknowledgement



- This work has been supported by Ontario Research Foundation.
- Pedro Castillo Castillo (MASc student) has carried out this work as a part of his research.
- Jeff Kelly has been a great brainstorming / sounding board.



