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Why gasoline blending? 

• From industrial viewpoint: 
– Important component of refinery profits. 

 

• From academic viewpoint: 
– Small, easy to understand model of the physical system. 

• Linear, bilinear, or highly nonlinear 

– Multiple optima 

– Knowledge gained about gasoline blending is often directly applicable 
to more complex process plants. 

 



Sample Gasoline Blending System  

Assumption: 
Quality 
constant 
over time 

Assumption: 
Demand 
known over 
time 



How Much to Produce and When for Each Product? 

Multi-period Planning  
 (MINLP, feasible at boundaries) 

Scheduling (interactive 
simulation or MILP) 

Discrete time approach 

The shorter the periods, the 

more likely is that a feasible 

schedule can be created. 

Continuous time approach 

Solve simultaneously for 

start/end of each blend and 

for the blend recipe. 

Li and Karimi, IEC Research, 2011, pp. 9156-9174 



Discrete Time: Opening and Closing Inventory 

period k 

Opening 

inventory 

Closing 

inventory 

Material 
added 

Material 
shipped 

= + + 



Discrete Time: Inventory Connects Time Periods 

period k 

Opening 

inventory 

Closing 

inventory 

period k+1 

Closing 

inventory 
Opening 

inventory 



Blending Model: Inventory Constraints 

• Volumetric balance - components 

 

 

• Inventory constraints – components 

 

 

• Volumetric balance – products 

 

 

• Inventory constraints - products 
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Blending model: Quality constraints 

• Quality*volume (for properties blended linearly) 

 

 

• Non-linear quality constraints, e.g. RVP 

 

 

• Total blend volumes 
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Blending model: integer constraints  

• Threshold production: 
– If grade “g” is blended in period “k” then the amount blended has to 

be greater than or equal to the “threshold amount”. 

– If grade “g” is blended, then there is a set-up time (lost production 
capacity) associated with it. 

 

• Not included: 
– Minimize switches (i.e. continue blending “A” in “k+1” if that was the 

last thing done in “k” and if A needs to be blended in “k+1”) 

 



Discrete Time Approach 

• Increasing number of periods leads to a rapid increase in 
MINLP solution times. 

• Coarse time periods often lead to solutions that are intra-
period infeasible. 

• As a rule, each period has blend recipes that are different 
from the recipes in the adjacent periods. 

• There are many optimal solutions (with the same value of the 
objective function; globally optimal). 

• Different solvers arrive at the same value of the objective 
function but the solution are different.  
 

 



Questions that we want to answer: 

• How long can we keep the bend recipe constant along the 
planning horizon?   
– Does this have anything to do with supply/demand pinch? 

 

• How to exploit existence of intervals with constant blend 
recipes to reduce computational times at the planning level 
and compute production plans that are feasible? 
 

• How to exploit such intervals in scheduling? 
 

• Are there wider implications for process plants production 
planning and scheduling? 

 

 



Total Demand vs. Production Capacity 
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Time 

Cumulative Total Demand (CTD)

Cumulative Average Total Production (CATP)

Cumulative Maximum Blender Capacity

Operation at constant 
production rate with 
single blend recipe 
that is optimal for 
aggregate blend. 
BUT 
Not feasible – does 
not meet demand. V(0) 



Optimal Solution 
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Time 

Inventory Pinch 
at Time = 8 V(0) 



Hypothesis 
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Time 

Inventory 
Pinch at 
Time=8 

Is this an interval (t-period) where 
one  blend recipe is optimal? 

V(0) 



Inventory Pinch Point Definition 

0

700

1400

2100

2800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
u

m
u

la
ti

ve
 V

o
lu

m
e

 (
B

B
L)

 

Time 

Local 
Inventory 
Pinch at 
Time 3 

True 
Inventory 
Pinch at 
Time 9 
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Multi-Period Inventory Pinch Algorithm  
for Production Planning 

Multi-period Planning  
 (MINLP, feasible at boundaries) 

Scheduling (interactive 
simulation or MILP) 

Current discrete time approach 

The shorter the periods, the 

more likely is that a feasible 

schedule can be created. 

Inventory pinch multiperiod model 

Scheduling   
(this will be explored) 

How much to blend & when 

NLP 

MILP “l-periods” 

1 K 

Optimize blend recipes 
K-periods NLP 

“t-periods” 



Multi-Period Inventory Pinch Algorithm  
for Production Planning 

Inventory pinch multiperiod model 

How much to blend & when 

NLP 

MILP 

Pinch points determine period 

boundaries.  If operation is infeasible, 

pinch- delimited period is subdivided. 

Blend recipes and volumes to 

blend in each t- period. 

Infeasibility (if any) info: 
Where to subdivide t-period Constraints: 

• Minimum blend size threshold . 

• Inventory constraints.   

 If operation is infeasible, identify the l-

 period where infeasible.   Subdivide t-

 period at that point. 

“l-periods” 

1 K 

Optimize blend recipes 
K-periods NLP 

“t-periods” 



Lower Level: Determine best feasible solution 
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PenaltyP(g,n)  >>  PenaltyP(g,n+1)  

“Push” product inventory infeasibilities as far forward as possible, i.e. 



Case Study  



Case Study / Product Inventory - Iteration 1 



Case Study /t-periods for iteration 2 



Case Study / Product Inventory – Iteration 2 



Case Study / Top Level: Optimal Blend Recipes 

U87 U91 U93 U87 U91 U93

ALK 0.1493 0.2461 0.1848 0.0079 0.1418 0.0975

BUT 0.0255 0.0361 0.0434 0.0204 0.0345 0.0407

HCL 0.0265 0.0351 0.0243 0 0 0

HCN 0.052 0.065 0.0475 0.0007 0.0033 0.0013

LCN 0.2925 0.2081 0.1517 0.3933 0.1849 0.1856

LNP 0.1678 0.0674 0.0244 0.2126 0.1472 0.0712

RFT 0.2863 0.3421 0.5238 0.3651 0.4883 0.6037

U87 U91 U93 U87 U91 U93 U87 U91 U93 U87 U91 U93

ALK 0.1498 0.2446 0.1902 0.1644 0.2432 0.1795 0.1492 0.2463 0.1849 0.008 0.1415 0.0976

BUT 0.0257 0.0351 0.043 0.0272 0.0373 0.0443 0.0256 0.0361 0.0435 0.0204 0.0344 0.0407

HCL 0.0208 0.0277 0.0243 0.0332 0.0514 0.031 0.0259 0.0345 0.024 0 0 0

HCN 0.0255 0.0359 0.0367 0.0711 0.0898 0.0612 0.0522 0.0652 0.0476 0.0008 0.0027 0.0016

LCN 0.2513 0.2117 0.1541 0.2548 0.1705 0.1265 0.2925 0.2082 0.1519 0.3917 0.1873 0.1863

LNP 0.1947 0.0849 0.0275 0.1617 0.0572 0.0221 0.1681 0.0676 0.0244 0.213 0.147 0.0708

RFT 0.3321 0.3601 0.524 0.2876 0.3506 0.5354 0.2865 0.342 0.5237 0.3661 0.4872 0.6029

k2 k3

0.3102

U91

1st Iteration

Time period k2 k3

0.3515

U93

0.1846

0.0438

0.028

0.0514

0.1378

Gasoline Grade

Blending 

Comp.

k1

U87

0.1568

0.0262

0.0258

0.0437

0.2573

0.18

Gasoline Grade

Blending 

Comp.

2nd Iteration

Time period k1' k1''

0.0242

0.5302

0.2467

0.0363

0.0389

0.0651

0.192

0.0694



Volumes to Blend at the Top Level 

  Volumes to blend (BBL) 
 

1st Iteration (infeasible) 
 

Gasoline Grade U87 U91 U93 

Time period 

k1 470 230 185 

k2 50 30 30 

k3 260 130 160 

Total 780 390 375 
 

2nd Iteration (feasible) 
 

Gasoline Grade U87 U91 U93 

Time period 

k1 217.89 144.97 107.98 

k2 252.11 85.03 77.02 

k3 50 30 30 

k4 260 130 160 

Total 780 390 375 



Summary of Case Studies – Multiperiod Inventory Pinch 

Objective 

Function 

(×10
3
$)

Total CPU 

time (s)

Objective 

Function 

(×10
3
$)

Total CPU 

time (s)
Iterations

1 Regular 37,542.2 13.879 37,542.5 2.200 1

2 Regular 38,120.9 99.444 38,121.2 1.913 1

3 Regular 38,309.6 11.582 38,309.9 0.956 1

4 Regular 37,990.9 12.495 37,991.1 1.089 1

5 Regular 37,863.9 7.041 37,864.2 1.005 1

6 Regular 37,680.3 17.208 37,680.6 0.990 1

7 Regular 37,324.0 17.228 37,324.5 7.825 4

8 Regular 37,761.5 7.679 37,761.8 1.548 1

9 Regular 37,377.2 14.520 37,377.5 1.203 1

10 Irregular 37,943.1 14.387 37,943.4 0.863 1

11 Irregular 38,518.2 17.738 38,518.5 1.019 1

12 Irregular 38,753.9 14.635 38,754.2 2.531 2

13 Irregular 38,405.0 22.266 38,405.3 1.076 1

14 Irregular 38,195.7 14.161 38,196.0 1.331 1

15 Irregular 38,073.1 18.715 38,073.4 1.156 1

16 Irregular 37,784.2 21.872 37,784.5 2.497 2

17 Irregular 38,192.3 15.586 38,192.6 1.344 1

18 Irregular 37,796.2 14.432 37,796.5 1.521 1

Case 

Study

Supply 

rate

DICOPT Solution 

(MINLP model)

Multi-Period Inventory Pinch 

Algorithm Solution (IPOPT, 

CPLEX)



Single Period Inventory Pinch Algorithm 

• Can we solve a series of single period NLPs at the top level 
and still get the optimal solution? 



Single-Period vs. Multi-Period  
Inventory Pinch Algorithms for Production Planning 

Inv. pinch multiperiod algorithm 

Scheduling   
(this will be explored) 

1 K 

Optimize blend recipes 
K-periods NLP 

How much to blend & when 

MILP 

“t-periods” 

“l-periods” 

Inv. pinch single period algorithm 

Scheduling   
(this will be explored) 

1 K 

Optimize blend recipes 
Single period NLP (K times) 

How much to blend & when 

MILP 

“t-periods” 

“l-periods” 



Single-Period Inventory Pinch Algorithm 

1. Solve at  the top level a separate NLP for each t-period. 

2. Solve at the lower level a MINLP for the entire planning 
horizon.   

3. If feasible, STOP.  Otherwise: 

4. Positive slacks on the product inventory shows how much 
more  product needs to be produced in the previous period: 
– Increase the amount to be produced in the previous t-period by that 

increment. 

– Decrease amount to be produced in the current t-period  by the same 
amount. 

– Subdivide t-period. 

– Go to 1. 



Example:  Two Blenders System 

System structure is represented at the lower level (MILP). 



Problem Size 

Model # Equations 
# Continuous 

Variables 

# Discrete 

Variables 
# Non-zeros 

MINLP model  
1,723 1,275 42 7,187 

(1 blender, 14 time periods) 

MINLP model  
2,885 1,989 84 12,983 

(2 blenders, 14 time periods) 

NLP model  

231 171 0 869 (MPIP algorithm, 2 time 

periods) 

NLP model  
106 76 0 403 

(SPIP algorithm) 

MILP model 

1,267 939 42 3,203 (1 blender, 14 time periods, 2 

fixed recipes) 

MILP model 

1,967 1,317 84 5,009 (2 blenders, 14 time periods, 2 

fixed recipes) 



Case Study / 2 Blenders 



Case Study / Product & Component Inventories 

Product Inventories Component Inventories 



Summary of Case Studies – Single Period Inventory Pinch 

Objective 

Function 

(×10
3
$)

Total CPU 

time (s)

Objective 

Function 

(×10
3
$)

Total CPU 

time (s)
Iterations

19 1 On-Spec Linear 43420.2 12.26 43421.74 4.2 2

20 1 On-Spec Linear 41349.62 29.08 41350.01 1.23 1

21 1 On-Spec Linear 43161.03 37.69 43161.34 1.4 1

21 2 On-Spec Linear 43161.05 63.52 43161.33 1.5 1

22 1 On-Spec Linear 41874.17 20.53 41874.44 1.36 1

22 2 On-Spec Linear 41874.45 115.15 41874.45 2.75 1

23 1 On-Spec Nonlinear 43657.71 13.84 43658 0.98 1

24 1 On-Spec Nonlinear 43611.69 12.81 43611.97 2.19 2

25 1 On-Spec Nonlinear 43611.69 33.2 43611.98 1.08 1

25 2 On-Spec Nonlinear 43611.69 34.64 43611.97 1.19 1

26 1 On-Spec Nonlinear 43934.67 18.51 43934.95 1.71 1

26 2 On-Spec Nonlinear 43934.95 82.32 43934.95 2.04 1

27 1 On-Spec Nonlinear 43627.27 372.59 43627.45 8.77 5

27 1 On-Spec Linear 43142.09 424.95 43142.25 7.8 5

28 1 On-Spec Nonlinear 43611.69 641.76 43667.68 5.02 3

28 1 On-Spec Linear 43101.12 235.61 43126.28 4.33 3

29 1 Off-Spec Linear 43424.87 15.17 43425.15 2.87 1

30 1 Off-Spec Linear 41470.45 7.73 41470.74 3.05 1

30 2 Off-Spec Linear 41470.45 56.87 41470.74 3.57 1

Single-Period Inventory Pinch 

Algorithm Solution (IPOPT, 

CPLEX)Case 

Study

Number of 

blenders

Initial 

Product 

Inventory

RVP 

Blend 

Property

DICOPT Solution 

(MINLP model)



Comparison: Multi-period MINLP vs.  
Multi-Period  & Single Period Inventory Pinch Algorithms  

Objectiv

e 

Function 

(×10
3
$)

Total 

CPU 

time (s)

Objectiv

e 

Function 

(×10
3
$)

Total 

CPU 

time (s)

Iteration

s

Objective 

Function 

(×10
3
$)

Total 

CPU 

time (s)

Iteration

s

22 1 On-Spec Linear 41874.17 20.53 41874.44 1.36 1 41874.45 0.864 1

22 2 On-Spec Linear 41874.45 115.15 41874.45 2.75 1 41874.45 1.178 1

26 1 On-Spec Nonlinear 43934.67 18.51 43934.95 1.71 1 43934.95 1.777 1

26 2 On-Spec Nonlinear 43934.95 82.32 43934.95 2.04 1 43934.95 2.117 1

27 1 On-Spec Nonlinear 43627.27 372.59 43627.45 8.77 5 43627.56 2.058 2

27 1 On-Spec Linear 43142.09 424.95 43142.25 7.8 5 43142.37 2.23 2

28 1 On-Spec Nonlinear 43611.69 641.76 43667.68 5.02 3 43611.97 0.852 1

28 1 On-Spec Linear 43101.12 235.61 43126.28 4.33 3 43101.4 0.86 1

Multi-Period Inventory Pinch 

Algorithm Solution (IPOPT, 

CPLEX)

Case 

Study

Number 

of 

blenders

Initial 

Product 

Inventor

y

RVP 

Blend 

Property

DICOPT Solution 

(MINLP model)

Single-Period Inventory 

Pinch Algorithm Solution 

(IPOPT, CPLEX)

Preliminary conclusion: Increase from 1 to 2 blenders leads to 4+ times higher 

execution times with DICOPT.  MPIP increase is less than 1.5. 



Previous related work 

Glismann and Gruhn Inventory pinch multiperiod model 

Scheduling   
(this will be explored) 

How much to blend & when 

NLP 

MILP “l-periods” 

1 K 

Optimize blend recipes 
K-periods NLP 

“t-periods” 

How much to blend & when 

NLP 

MILP 

Optimize blend recipes 
N-periods NLP 

Scheduling 

• Calendar based periods 

• Many different blend recipes in MINLP 

• Scheduling based on fixed duration 

(2hr) periods.  Multiple choices of fixed 

recipes if infeasibility encountered. 



Scheduling 

• We do not have completed the studies. 

• Possibility: 
– Can we combine the best of both worlds: 

• Discreet-time inventory pinch delimited planning 

• Continuous time scheduling (with fixed recipes) 

AND have very short execution times. 



Does it work for process plants (e.g. refinery) planning? 

• Expectation: YES 

 

• Work remains to be completed. 

 

• Impact on practice: 
– Non-linear, computationally intensive models of the plants to be used 

for production planning with execution times that are much shorter 
than with the “calendar set” time periods. 



Conclusions / 1 

• Inventory pinch enables a new decomposition of linear and 
non-linear (gasoline) production planning problems. 

• Multi-period inventory pinch algorithm: 
– Computes the same optimal value of the objective function as MINLP. 

– Compared to multi-period MINLP, the algorithm substantially reduces 
number of different operating conditions (blend recipes) at which the 
system needs to operate. 

– Computational times are substantially lower than multiperiod MINLP. 

• Will this lead to more elaborate (more detailed) non-linear refinery 
production planning (or multi-refinery planning) models? 

• Extension to scheduling is yet to be explored. 
– Will this enable us to combine the best of discrete-time and 

continuous-time approaches? 



Conclusions / 2 

• Single period inventory pinch algorithm computes objective 
function optimums that are in most cases identical to 
multiperiod MINLP. 
– If not optimal, the difference is very small. 

– Is there a way to modify the algorithm to guarantee optimality? 

• Is there potential to use existing rigorous simulation and 
optimization (single period) software for production planning? 



Acknowledgement 

• This work has been supported by Ontario Research 
Foundation. 

 

• Pedro Castillo Castillo (MASc student) has carried out this 
work as a part of his research. 

 

• Jeff Kelly has been a great brainstorming / sounding board. 



End 

 


