

Inventory Pinch Algorithms for Gasoline Blending

Fields Institute Industrial Seminars March 19, 2013 V. Mahalec, McMaster University

- Brief overview of gasoline blending & current solution approaches
- Inventory Pinch concept
- Multiperiod inventory pinch algorithm for blend planning
- Single period inventory pinch algorithm for blend planning
- Extensions to scheduling and general production planning
- **Conclusions**

Why gasoline blending?

- From industrial viewpoint:
	- Important component of refinery profits.
- From academic viewpoint:
	- Small, easy to understand model of the physical system.
		- Linear, bilinear, or highly nonlinear
	- Multiple optima
	- Knowledge gained about gasoline blending is often directly applicable to more complex process plants.

Sample Gasoline Blending System

University

How Much to Produce and When for Each Product?Jniversity

Discrete time approach

more likely is that a feasible N schedule can be created.

Solve simultaneously for start/end of each blend and for the blend recipe.

Li and Karimi, IEC Research, 2011, pp. 9156-9174

Continuous time approach

K slots on each unit (component tank, blender, or product tank)

Discrete Time: Opening and Closing Inventory

University

Discrete Time: Inventory Connects Time Periods

University

Blending Model: Inventory Constraints

• Volumetric balance - components

$$
V_{C,K}^{close}(i) = V_{C,K}^{open}(i) + V_{C,K}^{in}(i) - \sum_{g} V_{C,K}(i,g) + S_{C,K}^{+}(i) - S_{C,K}^{-}(i)
$$

- Inventory constraints components $V_{\rm C}^{\rm min}(i) \leq V_{\rm C,K}^{\rm close}(i) \leq V_{\rm C}^{\rm max}(i)$ C close C,K min $V_{\rm C}^{\rm min}(i) \leq V_{\rm C,K}^{\rm close}(i) \leq V_{\rm C}^{\rm max}(i)$
- Volumetric balance products $V_{P,K}^{close}(g) = V_{P,K}^{open}(g) + V_{B,K}(g) - D_{P,K}(g) + S_{P,K}^{+}(g) - S_{P,K}^{-}(g)$ open P,K close $V_{P,K}^{close}(g) = V_{P,K}^{open}(g) + V_{B,K}(g) - D_{P,K}(g) + S_{P,K}^{+}(g) - S_{P,K}^{-}(g)$
- Inventory constraints products

 $V_P^{\min}(g) \leq V_{P,K}^{\text{close}}(g) \leq V_P^{\max}(g)$ P close P,K min $V_P^{\text{min}}(g) \leq V_{P,K}^{\text{close}}(g) \leq V_P^{\text{max}}(g)$

Blending model: Quality constraints

- Quality*volume (for properties blended linearly) $Q_P^{\min}(g, s) \cdot V_{B K}(g, k) \leq \sum Q_C(i, s) \cdot V_{C K}(i, g, k) \leq Q_P^{\max}(g, s) \cdot V_{B K}(g, k)$.
B,K max P $\lim_{B,K} (g,k) \leq \sum_i Q_{\text{C}}(i,s) \cdot \text{V}_{\text{C},K}$ min $P_{\text{P}}^{\min}(g, s) \cdot V_{\text{B,K}}(g, k) \le \sum Q_{\text{C}}(i, s) \cdot V_{\text{C,K}}(i, g, k) \le Q_{\text{P}}^{\max}(g, s) \cdot V_{\text{B,K}}(g, k)$
- Non-linear quality constraints, e.g. RVP $(Q_c (i,s = RVP))$ 0.8 1 1.25 $_{K}(g, s = RVP) = \left| \sum x_K(i, g) \cdot (Q_C(i, s = RVP))^{1.25} \right|$ \rfloor $\overline{}$ $\begin{array}{c} \end{array}$ $\overline{\mathsf{L}}$ \mathbf{r} $= RVP$) = $\sum x_K(i, g) \cdot (Q_C(i, s =$ $=$ *I i* $Q_{P,K}(g,s = RVP) = \sum x_K(i,g) \cdot (Q_C(i,s = RVP))$
- Total blend volumes

 $V_{C,K}(i, g) - x_K(i, g) \cdot V_{B,K}(g) = 0$

$$
\sum_{i} \mathbf{x}_{\mathbf{K}}(i, g) = 1
$$

Blending model: integer constraints

Universi

- Threshold production:
	- If grade "g" is blended in period "k" then the amount blended has to be greater than or equal to the "threshold amount".
	- If grade "g" is blended, then there is a set-up time (lost production capacity) associated with it.
- Not included:
	- Minimize switches (i.e. continue blending "A" in "k+1" if that was the last thing done in "k" and if A needs to be blended in "k+1")

Discrete Time Approach

- Increasing number of periods leads to a rapid increase in MINLP solution times.
- Coarse time periods often lead to solutions that are intraperiod infeasible.
- As a rule, each period has blend recipes that are different from the recipes in the adjacent periods.
- There are many optimal solutions (with the same value of the objective function; globally optimal).
- Different solvers arrive at the same value of the objective function but the solution are different.

- How long can we keep the bend recipe constant along the planning horizon?
	- Does this have anything to do with supply/demand pinch?
- How to exploit existence of intervals with constant blend recipes to reduce computational times at the planning level and compute production plans that are feasible?
- How to exploit such intervals in scheduling?
- Are there wider implications for process plants production planning and scheduling?

Total Demand vs. Production Capacity

Optimal Solution

Hypothesis

Inventory Pinch Point Definition

Multi-Period Inventory Pinch Algorithm for Production Planning

Multi-Period Inventory Pinch Algorithm for Production Planning

Inventory pinch multiperiod model

Pinch points determine period boundaries. If operation is infeasible, pinch- delimited period is subdivided.

Blend recipes and volumes to blend in each t- period.

Infeasibility (if any) info: Where to subdivide t-period Constraints:

- *Minimum blend size threshold .*
- *Inventory constraints.*

If operation is infeasible, identify the lperiod where infeasible. Subdivide tperiod at that point.

University

$$
\min \left\{ \sum_{n} \left(\sum_{g} \left(S_{P}^{+}(g, n) + S_{P}^{-}(g, n) \right) \times \text{Penalty}_{P}(g, n) \right) \right\}
$$

 $Penalty_P(g,n) >> Penalty_P(g,n+1)$

$$
V_P^{\text{close}}(g,n) = V_P^{\text{open}}(g,n) + V_B(g,n) - D_P(g,n) + S_P^+(g,n) - S_P^-(g,n)
$$

Case Study

University

Case Study /t-periods for iteration 2

Case Study / Product Inventory – Iteration 2

University

Case Study / Top Level: Optimal Blend Recipes

University

Volumes to Blend at the Top Level

Summary of Case Studies – Multiperiod Inventory Pinch

• Can we solve a series of single period NLPs at the top level and still get the optimal solution?

Single-Period vs. Multi-Period Inventory Pinch Algorithms for Production Planning

Inv. pinch multiperiod algorithm

Inv. pinch single period algorithm

- 1. Solve at the top level a separate NLP for each t-period.
- 2. Solve at the lower level a MINLP for the entire planning horizon.
- 3. If feasible, STOP. Otherwise:
- 4. Positive slacks on the product inventory shows how much more product needs to be produced in the previous period:
	- Increase the amount to be produced in the previous t-period by that increment.
	- Decrease amount to be produced in the current t-period by the same amount.
	- Subdivide t-period.
	- $-$ Go to 1.

Example: Two Blenders System

System structure is represented at the lower level (MILP).

Problem Size

Case Study / 2 Blenders

/-periods

Case Study / Product & Component Inventories

Product Inventories **Component Inventories**

University

Summary of Case Studies – Single Period Inventory Pinch

Comparison: Multi-period MINLP vs. Multi-Period & Single Period Inventory Pinch Algorithms

Preliminary conclusion: Increase from 1 to 2 blenders leads to 4+ times higher execution times with DICOPT. MPIP increase is less than 15.

Previous related work

- Calendar based periods
- Many different blend recipes in MINLP
- Scheduling based on fixed duration (2hr) periods. Multiple choices of fixed recipes if infeasibility encountered.

Glismann and Gruhn Inventory pinch multiperiod model

Scheduling

- We do not have completed the studies.
- Possibility:
	- Can we combine the best of both worlds:
		- Discreet-time inventory pinch delimited planning
		- Continuous time scheduling (with fixed recipes)

AND have very short execution times.

Does it work for process plants (e.g. refinery) planning?

- Expectation: YES
- Work remains to be completed.
- Impact on practice:
	- Non-linear, computationally intensive models of the plants to be used for production planning with execution times that are much shorter than with the "calendar set" time periods.

Conclusions / 1

- Inventory pinch enables a new decomposition of linear and non-linear (gasoline) production planning problems.
- Multi-period inventory pinch algorithm:
	- Computes the same optimal value of the objective function as MINLP.
	- Compared to multi-period MINLP, the algorithm substantially reduces number of different operating conditions (blend recipes) at which the system needs to operate.
	- Computational times are substantially lower than multiperiod MINLP.
		- Will this lead to more elaborate (more detailed) non-linear refinery production planning (or multi-refinery planning) models?
- Extension to scheduling is yet to be explored.
	- Will this enable us to combine the best of discrete-time and continuous-time approaches?

Conclusions / 2

- Single period inventory pinch algorithm computes objective function optimums that are in most cases identical to multiperiod MINLP.
	- If not optimal, the difference is very small.
	- Is there a way to modify the algorithm to guarantee optimality?
- Is there potential to use existing rigorous simulation and optimization (single period) software for production planning?

- This work has been supported by Ontario Research Foundation.
- Pedro Castillo Castillo (MASc student) has carried out this work as a part of his research.
- Jeff Kelly has been a great brainstorming / sounding board.

