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Motivation

Our Research Project

Main Aim
To create a computational framework that provides justifiable
answers to a broad range of “what if?” questions about systemic
risk in random financial networks.
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Motivation

Aspects of the Main Aim

1 random financial network (RFN): stochastic model for N
banks, their balance sheets, behaviour and mutual exposures.

2 systemic risk (SR): the risk that default or stress of one or
more banks will trigger default or stress of further banks,
leading to large scale cascades of failures in the RFN.

3 computational framework:
1 rigorous asymptotic analysis as N →∞;
2 Monte Carlo simulations for finite N .

4 Typical what if? question: What if the RFN with parameter
θ experiences a random shock? Is there a critical “knife-edge”
value θ∗ sharply separating cascading from non-cascading?

5 justifiable answers:
I clear, reasonable assumptions;
I rigorous analysis;
I robust conclusions.
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Motivation

Why Study Systemic Risk?

1 The climax of the crisis in 2008 was predominantly a network
crisis driven by two major explosions:

I The buyers of CDS protection from AIG were unaware of the
huge exposures AIG had taken on to its balance sheet.

I Similarly, the true nature of Lehman Bros’ highly levered
balance sheet was massively obscured by their illegal use of
the infamous “Repo 105” transactions.

2 Much of Basel III is macroprudential: Reporting and limits
on large exposures to individual counterparties or groups of
counterparties; the Liquidity Coverage Ratio (LCR) and the
Net Stable Funding Ratio (NSFR); the capital surcharges on
SIFIs.

3 New interbank exposure databases will need new theory.

4 It’s fun.
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Static Cascade Models

Channels of Systemic Risk

There are at least four important channels of Systemic Risk:

1 Correlation: The system may be impaired by a large
correlated asset shock.

2 Default Contagion: Default of one bank may trigger
defaults of other banks.

3 Liquidity Contagion: Funding illiquidity of one bank may
trigger illiquidity of other banks.

4 Market Illiquidity: Large scale asset sales by one or more
distressed banks may trigger a “firestorm” or downward price
spiral, further impairing the entire system.
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Static Cascade Models

Static Cascade Models

Contagion effects in financial networks are analogous to the
spread of disease.

A number of distinct mechanisms can be identified.

We model such mechanisms first in static cascades.

Static means during the cascade we ignore external shocks (in
particular central bank actions) and focus only on internally
generated shocks.
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Static Cascade Models

Eisenberg-Noe 2001 Model: Balance Sheets
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Static Cascade Models

EN2001 Insolvency Cascade

Total nominal assets = Ȳv + Z̄v, Z̄v =
∑

w Ωwv;

Total nominal liabilities = D̄v + X̄v + Ēv, X̄v =
∑

w Ωvw.

Ωvw = amount bank v owes bank w.

We assume a bank v defaults whenever its mark-to-market
equity becomes zero (it can’t go negative):

E = Assets − Liabilities = 0

Then any creditor bank w is forced to mark down its
interbank assets, thus receiving a default shock.
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Static Cascade Models

EN2001 Cascade Mapping

1 At the onset of the cascade, some banks have ∆
(0)
v = Ēv ≤ 0

and become primary defaults.
2 Let p

(n)
v be amount of interbank debt v can pay after n steps

of the cascade.
3 The mark-to-market value of interbank assets is then

Z(n)
v =

∑
w

Πwvp
(n−1)
w , Πwv = Ωwv/X̄w

4 and

p(n)
v = F (EN)

v (p(n−1));F (EN)
v (p) := max(0,min(X̄v, Ȳv+

∑
w

Πwvpw−D̄v))

5 Clearing condition is fixed point of mapping, guaranteed to
exist by Tarski Fixed Point Theorem:

p = F (EN)(p)
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Static Cascade Models

EN2001 Default Buffer Mapping

1 If ∆
(n)
w denotes the default buffer after n cascade steps, then

∆(n)
w = ∆(0)

w −
∑
v

Ωvw (1− h(∆(n−1)
v /X̄v))

p(n)
w = X̄v h(∆(n−1)

v /X̄v)

2 Threshold functions such as

h(x) = max(x+ 1, 0)−max(x, 0)

or h̃(x) = 1x>0

determine fractional recovered value of defaulted assets.
3 As n→∞, buffers ∆

(n)
w converge to unique fixed point

∆+ = {∆+
v } of solvency cascade mapping.

4 Gai-Kapadia 2010 Model is formally identical to EN2001, but
with h replaced by h̃.
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Static Cascade Models

Illiquidity Cascade: Balance Sheets
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Static Cascade Models

Illiquidity Cascade: Seung Hwan Lee 2013 Model

1 At time 0, banks experience deposit withdrawals ∆dv ≥ 0.
2 These are paid immediately in order of seniority by...
3 First liquid assets Z̄ + ȲL, then fixed assets ȲF .
4 Debtor banks receive liquidity shocks;
5 Let bank v have initial liquidity buffer Σ

(0)
v = −∆dv ≤ 0

6 After n− 1 cascade steps, then

Σ(n)
w = Σ(0)

w −
∑
v

Ωwv (1− h(Σ(n−1)
v /Z̄v))

7 As n→∞, buffers Σ
(n)
w converge to unique fixed point

Σ∞ = {Σ∞w } of liquidity cascade mapping.
8 Mathematically identical to EN 2001! The Gai-Haldane-

Kapadia 2011 Liquidity Cascade is also formally identical to
GK 2010.

Tom Hurd, McMaster University Contagion Channels 13 / 41



Static Cascade Models

Single Buffer Models

1 In these models, each bank’s behaviour, and hence the
cascade itself, is determined by a single buffer ∆v or Σv.

2 Single buffer models can involve multiple thresholds.
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Double Cascade Model

A Double Buffer Model

1 In more complex models, banks’ behaviour is determined by
two or more buffers.

2 HCCMS 2013 introduces a double cascade model of
illiquidity and insolvency, intertwining two buffers ∆v,Σv,
that combines the essence of both [GK, 2010a] default
cascade and [GK, 2010b] liquidity cascade.

3 No non-contagion channels of SR: We assume them away.

Question
What effect does a bank’s behavioural response to liquidity stress
have on the probable level of eventual defaults in entire system?
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Double Cascade Model

Crisis Timing Assumptions

1 The crisis commences on day 0 after initial shocks trigger
default or stress of one or more banks;

2 Balance sheets are recomputed daily;

3 Banks respond daily ;

4 External cash flows, interest payments, asset and liability
price changes are ignored throughout crisis.

Tom Hurd, McMaster University Contagion Channels 16 / 41



Double Cascade Model

Bank Behaviour Assumptions

On each day of the crisis:

1 Insolvent banks, characterized by ∆ = 0, default 100% on
their IB obligations. Its creditor banks write down their
defaulted exposures to zero thereby experiencing a solvency
shock.

2 A stressed bank, any non-defaulted bank with Σ = 0, reduces
its IB assets AIB to (1− λ)AIB, transmitting a stress shock
to the liabilities each of its debtor banks.

3 λ is a constant across all banks.

4 A newly defaulted bank also triggers maximal stress shocks.
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Random Financial Networks

Critique of Static Cascade Models

1 Real world financial systems are far from these models.

2 Bank balance sheets are hugely complex.

3 Interbank exposure data are never publicly available.

4 Interbank exposures are known to change rapidly day to day.

5 Banking networks are often highly heterogeneous.
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Random Financial Networks

3 Reasons to Study Large Stochastic Networks

1 Even a completely known deterministic system, if it is large
enough, can be well described by the average properties of
the system.

2 Balance sheets of banks, between reporting dates, are not
observed even in principle, and change quickly.

3 Even a fully known hypothetical financial system will be hit
constantly by random shocks from the outside, stochastic
world.
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Random Financial Networks

2 Nodes and 1 Edge
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Random Financial Networks

Random Financial Network (RFN)

...is a quintuple (N , E ,∆,Σ,Ω) where

N , E is a directed random configuration graph (the
“skeleton”):

I nodes v ∈ N represent “banks”;
I directed links ` ∈ E represent interbank exposures.

∆ = (∆v)v∈N is the set of random default buffers;

Σ = (Σv)v∈N is the set of random stress buffers;

Ω = (Ω`)`∈E is the set of random interbank exposures.

1 Random configuration graphs are characterized by in/out
degree distribution matrices {Pjk, Qkj}.

2 Random variables have CDFs {Djk(x), Sjk(x),Wkj(x)}.
3 Initially insolvent (or stressed) banks have ∆v ≤ 0 (Σv ≤ 0).
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Random Financial Networks

The Cascade Problem

Define conditional stress and default probabilities after n cascade
steps:

p
(n)
jk = P [v ∈ Dn|v ∈ Njk] ,

q
(n)
jk = P [v ∈ Sn|v ∈ Njk] .

(1)

Problem
Given the RFN (N , E ,∆,Σ,Ω), compute p∞jk and q∞jk , the
probabilities that a type (j, k) bank eventually defaults or
becomes stressed.
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Large Graph Asymptotic Analysis

LTI: Locally Tree-like Independence property

N =∞ configuration graphs have a locally tree-like (LT)
property. We extend this notion to RFNs by assuming a certain
conditional independence on balance sheet random variables:

Assumption
LT independence property
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Large Graph Asymptotic Analysis

The Role of LTI

It leads to conditions under which probabilities like this can be
computed using independence:

P[ ∆v ≤
∑

w∈N−v Ωwvξ
(n)
wv ,Σv ≤

∑
w∈N+

v
Ωvwζ

(n)
vw |conditions]

fractional default on link fractional stress on link
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Large Graph Asymptotic Analysis

Cascade Mapping Theorem (Simplified)

Suppose quantities p
(n−1)
jk , q

(n−1)
jk , t

(n−1)
kj

1 are known. Then

p
(n)
jk =

〈
Djk,

(
g

(n−1)
j

)~j〉
where 〈·, ·〉 denotes the inner product on R+ and ~ denotes
convolution. Here

g
(n−1)
j (x) =

∑
k′

[
(1− p(n−1)

k′ )δ0(x) + t
(n−1)
k′j wk′j(x)

+(p
(n−1)
k′ − t(n−1)

k′j ) · 1

1− λ
wk′j(x/(1− λ))

]
·Qk′|j

Similar formulas hold for q
(n)
jk , t

(n)
kj .

1t
(n−1)
kj is probability link is 100% defaulted.
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Numerical Experiments

Poisson Experiment 1A: LTI vs MC

Poisson random directed graphs (N , E) with mean
connectivity z = 10;

Buffer distributions ∆v = 0.04 and Σv = 0.02 where total
assets are Av = 1;

Edge distribution Ω`: log normal with means µ` = 1
5j`

,
standard deviation σ` = 0.4µ`;

Initial shock: random subset of nodes that default;

λ ∈ [0, 1] represents the “stress response” parameter.

Analytic formulas using N =∞ LTI approximation are
compared with N = 20000 Monte Carlo estimators.
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Numerical Experiments
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Figure : Experiment 1A: Comparison of MC vs LTI analytics on
Poisson network, with errors bars for MC
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Numerical Experiments

Rules of Thumb: LTI Analytics vs Monte Carlo

Remark
The discrepancies are concentrated around the knife-edge,
that is, the cascade phase transition.

Monte Carlo variance is also extremely high around the
knife-edge.

Stress and default are negatively correlated.
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Numerical Experiments

Poisson Experiment 1B: Default Size vs ∆ and Σ
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Figure : (l) The effect of default buffer. (r) The effect of stress buffer.
MC error bars are shown.
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Numerical Experiments

Poisson Experiment 1C: Cascade Size vs z and λ
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Figure : Stress and default cascade sizes on Poisson networks as
functions of z and λ.
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Numerical Experiments

Experiment 2: Real-World Model of EU System

Skeleton graph: N = 90 node, L = 450 edge subgraph of a
single realization of a 1000 node scale-free graph.

Default buffers ∆v = (kvjv)
β1 exp[a1 + b1Xv];

Stress buffers Σv = 2
3
(kvjv)

β1 exp[a1 + b1X̃v];

Exposures Ω` = (k`j`)
β2 exp[a2 + b2X`];

{Xv, X̃v, X`} are I.I.D. standard normals;

Parameters match moments of interbank exposure data

β1 = 0.3, a1 = 8.03, b1 = 0.9, β2 = −0.2, a2 = 8.75, b2 = 1.16
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Numerical Experiments

Figure : Undirected skeleton graph of stylized 90 bank EU network.
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Numerical Experiments
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Figure : (l) EU resilience in normal times; (r) EU cascade after an
extreme crisis.

Tom Hurd, McMaster University Contagion Channels 33 / 41



Numerical Experiments
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Figure : Default and stress probabilities of individual EU banks after
extreme crisis.
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Conclusions

Overall Summary

We have developed a static framework for understanding
general cascade mechanisms in financial networks.

We have defined systemic risk (SR) in random financial
networks (RFNs);

We have a flexible computational framework, analytical for
N =∞ and Monte Carlo, even in complex model
specifications;

We have justifiable answers to a host of what if? questions.
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Conclusions

Rules of Thumb: Double Cascade Model

The stress response parameter λ and stress buffer Σ strongly
control network resilience to default;

These complex cascade models exhibit critical regions just as
predicted by simple cascade models.

LTI analytics and Monte Carlo work best, and agree best,
when the system is far from critical;
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Conclusions

Some General Observations

Our RFNs are a powerful laboratory for studying such
complex problems;

Our experiments reveal systemic responses that are difficult
to predict, but explicable in hindsight;

In “realistic” networks, cascades are not triggered unless
conditions become “extreme” for other reasons.

Many model parameters that have strong effects on the
stability of such systems still remain to be studied.

There are many stories to tell about the network effects that
can happen.
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Conclusions
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