Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects

The Fields Institute for Mathematical Sciences

Sebastian Jaimungal sebastian.jaimungal@utoronto.ca

Yuri Lawryshyn yuri.lawryshyn@utoronto.ca

University of Toronto, Toronto, Canada

November 26, 2014

Agenda

- Introduction
 - Motivation
 - Real Options
- Matching cash-flows
 - General approach (numerical solution)
 - Normal distribution (analytical solution)
- Indifference pricing
 - General approach (numerical solution)
 - Normal distribution (analytical solution)
- Results
- Practical implementation
- Conclusions

Motivation

- To develop a theoretically consistent real options approach to value R&D type projects
- Theoretical Approaches: Cash-flow determined by GBM

$$df_t = \mu f_t dt + \sigma f_t dW_t$$

• **Practice**: Managerial supplied cash-flow estimates consist of low, medium and high values

	F' 0	F'1	F' 2	F' 3	F' 4
Economic Profit (Optimistic)	80	120	150	180	200
Economic Profit (Likely)	50	70	75	80	90
Economic Profit (Pessimistic)	20	25	25	20	20

.

Valuation of R&D Projects: Managerial Sales and Cost Estimates

• Managers provide sales and cost estimates

Table :	Managerial	Supplied	$Cash\operatorname{-Flow}$	(Millions	\$)
---------	------------	----------	----------------------------	-----------	-----

	3	4	5	6	7	8	9	10
Sales	10.00	30.00	50.00	100.00	100.00	80.00	50.00	30.00
COGS	6.00	18.00	30.00	60.00	60.00	48.00	30.00	18.00
GM	4.00	12.00	20.00	40.00	40.00	32.00	20.00	12.00
SG&A	0.50	1.50	2.50	5.00	5.00	4.00	2.50	1.50
EBITDA	3.50	10.50	17.50	35.00	35.00	28.00	17.50	10.50
CAPEX	1.00	3.00	5.00	10.00	10.00	8.00	5.00	3.00
Cash-Flow	2.50	7.50	12.50	25.00	25.00	20.00	12.50	7.50

Standard NPV Approach Using CAPM

• Ryan and Ryan (2002) report that 83% of businesses apply the WACC to value discounted cash-flows (DCF)

• CAPM:
$$\mathbb{E}[r_E] = r_f + \beta_C(\mathbb{E}[r_M] - r_f)$$

• Use of CAPM implies beta: $\beta_C = \frac{\rho_{M,C}\sigma_C}{\sigma_M}$

- Ryan and Ryan (2002) report that 83% of businesses apply the WACC to value discounted cash-flows (DCF)
- CAPM: $\mathbb{E}[r_E] = r_f + \beta_C(\mathbb{E}[r_M] r_f)$
- Use of CAPM implies beta: $\beta_C = \frac{\rho_{M,C}\sigma_C}{\tau_{M,C}\sigma_C}$
- Some assumptions regarding β when using WACC

 - Cash-flow volatility: $\sigma_{project} = \sigma_C$?
 - Correlation of the cash-flows: $\rho_{project} = \rho_C$?

- Ryan and Ryan (2002) report that 83% of businesses apply the WACC to value discounted cash-flows (DCF)
- CAPM: $\mathbb{E}[r_E] = r_f + \beta_C(\mathbb{E}[r_M] r_f)$
- Use of CAPM implies beta: $\beta_C = \frac{\rho_{M,C}\sigma_C}{\sigma_{C}}$
- Some assumptions regarding β when using WACC

 - Cash-flow volatility: $\sigma_{project} = \sigma_C$?
- Correlation of the cash-flows: ρ_{project} = ρ_C?
 Some further assumptions regarding DCF:
 - Some further assumptions regarding DCF.
 - $\bullet\,$ No managerial flexibility / optionality imbedded in the project
 - Financial risk profile of the value of the cash-flows matches that of the average project of the company

- Ryan and Ryan (2002) report that 83% of businesses apply the WACC to value discounted cash-flows (DCF)
- CAPM: $\mathbb{E}[r_E] = r_f + \beta_C(\mathbb{E}[r_M] r_f)$
- Use of CAPM implies beta: $\beta_C = \frac{\rho_{M,C}\sigma_C}{\sigma_{C}}$
- Some assumptions regarding β when using WACC

 - Cash-flow volatility: $\sigma_{project} = \sigma_C$?
 - Correlation of the cash-flows: $\rho_{project} = \rho_C$?
- Some further assumptions regarding DCF:
 - ${\scriptstyle \bullet }$ No managerial flexibility / optionality imbedded in the project
 - Financial risk profile of the value of the cash-flows matches that of the average project of the company
- Proper beta: $\beta_{project} = \frac{\rho_{M,project}\sigma_{project}}{\sigma_{project}}$

- Ryan and Ryan (2002) report that 83% of businesses apply the WACC to value discounted cash-flows (DCF)
- CAPM: $\mathbb{E}[r_E] = r_f + \beta_C(\mathbb{E}[r_M] r_f)$
- Use of CAPM implies beta: $\beta_C = \frac{\rho_{M,C}\sigma_C}{\sigma_{C}}$
- Some assumptions regarding β when using WACC

 - Cash-flow volatility: $\sigma_{project} = \sigma_C$?
 - Correlation of the cash-flows: $\rho_{project} = \rho_C$?
- Some further assumptions regarding DCF:
 - ${\scriptstyle \bullet }$ No managerial flexibility / optionality imbedded in the project
 - Financial risk profile of the value of the cash-flows matches that of the average project of the company
- Proper beta: $\beta_{project} = \frac{\rho_{M,project}\sigma_{project}}{\sigma_M}$
- Matching method uses managerial supplied cash-flow estimates to determine $\sigma_{project}$

Real Options

- Why real options?
 - Superior to discounted cash flow (DCF) analysis for capital budgeting / project valuation
 - Accounts for the inherent value of managerial flexibility
 - Adoption rate ${\sim}12\%$ in industry (Block (2007))
- What is required?
 - Consistency with financial theory
 - Intuitively appealing
 - Practical to implement

Introduction: Real Options Approaches

	Intuitive	Practical / Easy to Implement	Financially Consistent	Minimal Subjectivity
Classic Approach	\checkmark	×	\checkmark	-
Subjective Approach	\checkmark	\checkmark	-	×
Market Asset Disclaimer	\checkmark	\checkmark	×	×
Revised Classic Approach	\checkmark	×	\checkmark	-
Integrated Approach	\checkmark	×	\checkmark	\checkmark

Relevant Literature - Utility Based Models

- Berk et al.¹ developed a real options framework for valuing early stage R&D projects
 - Accounts for: technical uncertainty, cash-flow uncertainty, obsolescence, cost uncertainty
 - Value of the project is a function of a GBM process representing the cash-flows
 - Main issue: how to fit real managerial cash-flow estimates to a GBM process
- Miao and Wang², and Henderson³
 - Present incomplete market real options models that show standard real options, which assume complete markets, can lead to contradictory results

¹See Berk, Green, and Naik (2004).

²See Miao and Wang (2007).

³See Henderson (2007).

Matching Method Advantages

- The approach utilizes managerial cash-flow estimates
- The approach is theoretically consistent
 - Provides a mechanism to account for systematic versus idiosyncratic risk
 - Provides a mechanism to properly correlate cash-flows from period to period
- The approach requires little subjectivity with respect to parameter estimation
- The approach provides a **missing link** between practical estimation and theoretical frameworks

RO in R&D Applications: Managerial Cash-Flow Estimates

• Managers provide cash flow estimates

	Expected Cash Flows per Year									
Scenario	1	2	3	4	5	6	7	8	9	
Optimistic	0	0	80	120	150	180	200	220	250	
Most likely	0	0	50	70	75	80	90	100	110	
Pessimistic	0	0	20	25	25	20	20	20	20	
Investment		450								

RO in R&D Type Applications: Two Approaches

- Managers supply low, medium and high sales and cost estimates (numerical solution)
- Managers supply \pm sales and cost estimates from which a standard deviation can be determined for a normal distribution (analytical solution)

RO in R&D Type Applications: Low, Medium and High Sales and Cost Estimates

• Managers supply revenue and GM% estimates

Scenario	End of Year Sales (Margin%)									
	3	4	5	6	7	8	9			
Optimistic	80	116	153	177	223	268	314			
	(50%)	(60%)	(65%)	(60%)	(60%)	(55%)	(55%)			
Most Likely	52	62	74	77	89	104	122			
	(30%)	(40%)	(40%)	(40%)	(35%)	(35%)	(35%)			
Pessimistic	20	23	24	18	20	20	22			
	(20%)	(20%)	(20%)	(20%)	(15%)	(10%)	(10%)			
SG&A*	10%	5%	5%	5%	5%	5%	5%			
Fixed Costs	30	25	20	20	20	20	20			

* Sales / General and Administrative Costs

RO in R&D Type Applications: \pm Sales and Cost Estimates

	End of Year Sales (Margin)								
		3		4		5		6	
Sales	5	52 ± 10	62	\pm 12	2 7	74	\pm 15	77	$'\pm15$
COG	S	(31 ± 6)	(37	7 ± 7) (44	± 9)	(46	$5 \pm 10)$
SG&/	4	10%		5%			5%	5%	
CAPE	Х	(30 ± 6)	(25	$5\pm5)$ (20 ±4) ± 4)	4) (20 ± 14)		
									_
				3	4	4	5	6	
	σ_S (Sales)			5.20	6.20)	7.40	7.70	
	σ_C (COGS)			3.12	3.72	2	4.44	4.62	
	σ_{EX} (CAPEX)			3.00	2.50)	2.00	2.00	
	σ_{0}	_{CF} (Cash-Flow	/)	4.61	4.94	4	5.55	5.75	

 $\sigma_{CF} = \sqrt{\sigma_{S}^{2} + \sigma_{C}^{2} + \sigma_{EX}^{2} - 2\rho_{S,C}\sigma_{S}\sigma_{C} - 2\rho_{S,EX}\sigma_{S}\sigma_{EX} + 2\rho_{S,C}\rho_{S,EX}\sigma_{C}\sigma_{EX}}$

Real Options in R&D Type Applications

• Problem:

- How should we value the cash flows?
- How should we account for managerial risk aversion?
- Approach:
 - Apply "matching method" with MMM to value cash flows
 - Apply indifference pricing to determine the value with manager's risk aversion
- Why Account for Risk Aversion:
 - MMM assumes investors are fully diversified
 - Impact of managerial risk aversion on the valuation of a real options project can enhance decision making

Market Stochastic Driver

• Traded index / asset

$$dI_t = \mu I_t dt + \sigma I_t dW_t$$

• Assume there exists a *Market Stochastic Driver / Indicator* correlated to the traded index

$$dS_t = \nu S_t dt + \eta S_t (
ho dW_t + \sqrt{1 -
ho^2} dW_t^{\perp})$$

- Market stochastic driver
 - does not need to be traded
 - could represent market size / revenues
 - is not constrained to a GBM process
- Risk-neutral MMM

$$dI_{t} = rI_{t}dt + \sigma I_{t}d\widetilde{W}_{t}$$

$$dS_{t} = \widehat{\nu}S_{t}dt + \rho\eta S_{t}\left(d\widetilde{W}_{t} + \sqrt{1-\rho^{2}}dW_{t}^{\perp}\right)$$

$$\widehat{\nu} = \nu - \frac{\rho\eta}{\sigma}(\mu - r)$$

Match Cash Flow Payoff

Match Cash Flow Payoff

 Each cash flow is effectively an option on the market stochastic driver, V_T = φ(S_T), and so, we match probabilities

$$\mathbb{P}(\varphi(S_T) < v) = F^*(v)$$
$$\mathbb{P}(S_T < \varphi^{-1}(v)) = F^*(\varphi(S))$$
$$\mathbb{P}(S_0 e^{(\nu - \frac{\eta^2}{2})T + \eta\sqrt{T}Z} < S) = F^*(\varphi(S)), \ Z \underset{\mathbb{P}}{\sim} N(0, 1)$$
$$\mathbb{P}\left(Z < \frac{\ln \frac{S}{S_0} - (\nu - \frac{\eta^2}{2})T}{\eta\sqrt{T}}\right) = F^*(\varphi(S))$$
$$\Phi\left(\frac{\ln \frac{S}{S_0} - (\nu - \frac{\eta^2}{2})T}{\eta\sqrt{T}}\right) = F^*(\varphi(S))$$

Match Cash Flow Payoff

$$\varphi(S) = F^{*-1} \left\{ \Phi\left(\frac{\ln \frac{S}{S_0} - (\nu - \frac{\eta^2}{2})T}{\eta\sqrt{T}}\right) \right\}$$

Information Distortion

Risk-Neutral Measure

Theorem

The GBM Risk-Neutral Distribution. The conditional distribution function $\hat{F}_{v_k|S_t}(v)$ of v_k conditional on S_t at t, for $0 < t < T_k$, under the measure \mathbb{Q} is given by

$$\widehat{\mathsf{F}}_{\mathsf{v}_k|\mathsf{S}_t}(\mathsf{v}) = \Phi\left(\sqrt{rac{T_k}{T_k-t}}\Phi^{-1}\left(\mathsf{F}_k^*(\mathsf{v})
ight) - \widehat{\lambda}_k(t,\mathsf{S}_t)
ight)$$

where the pseudo-market-price-of-risk

$$\widehat{\lambda}_k(t,S) = \frac{1}{\eta\sqrt{T_k-t}}\ln\frac{S}{S_0} + \frac{\widehat{\nu} - \frac{1}{2}\eta^2}{\eta}\sqrt{T_k-t} - \frac{\nu - \frac{1}{2}\eta^2}{\eta}\frac{T_k}{\sqrt{T_k-t}}.$$

• Note that as $t \downarrow 0$ and $S \downarrow S_0$ then $\widehat{\lambda}_k(t, S) \downarrow -\rho \frac{\mu-r}{\sigma} \sqrt{T_k}$, i.e. the valuation is independent of ν and η .

Option Pricing

• Value of the cash flows

$$egin{aligned} &V_t = \sum_{i=1}^n e^{-r(t_i-t)} \mathbb{E}^Q \left[\left. V_{t_i} \right| \mathcal{F}_t
ight] \ &= \sum_{i=1}^n e^{-r(t_i-t)} \mathbb{E}^Q \left[\left. arphi_i (S_{t_i})
ight| \mathcal{F}_t
ight] \end{aligned}$$

• Value of the project with option

$$V = e^{-rt} \mathbb{E}^{Q} \left[\max \left(V_{t} - K, 0 \right) \right]$$

= $e^{-rt_{K}} \int_{-\infty}^{\infty} \left(\sum_{i=1}^{n} \left(e^{-r(t_{i} - t_{K})} \int_{-\infty}^{\infty} \varphi_{i} \left(S_{t_{i}} \right) \frac{e^{-\frac{y^{2}}{2}}}{\sqrt{2\pi}} dy \right) - K \right)_{+} \frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2\pi}} dx$
 $S_{t_{i}} = S_{0} e^{\left(\overline{\nu} - \frac{1}{2} \eta^{2} \right) t_{i} + \eta\left(\sqrt{t_{K}} x + \sqrt{t_{i} - t_{K}} y \right)}$

Matching Cash-Flows for Normally Distributed Estimates

- Assume that the managers have provided cash-flow estimates of the form N(μ_k, σ²_k)
- Assume the *Market Stochastic Driver* to be a Brownian motion
- Assume that there exists a cash-flow process: F_t
- Introduce a collection of functions $\varphi_k(S_t)$ such that at each T_k , $F_{T_k} = \varphi_k(S_{T_k})$

Theorem

The Replicating Cash-Flow Payoff. The cash-flow payoff function $\varphi_k(s)$ which produces the managerial specified distribution $\Phi\left(\frac{s-\mu_k}{\sigma_k}\right)$ for the cash-flows at time T_k , when the underlying driving uncertainty S_t is a BM, and $S_0 = 0$, is given by

$$\varphi_k(s) = \frac{\sigma_k}{\sqrt{T_k}} s + \mu_k^F.$$

Value of the Cash-Flows for Normally Distributed Estimates

Theorem

Value of the Cash-Flows. For a given set of cash-flow estimates, normally distributed with mean μ_k and standard deviation σ_k , given at times T_k , where k = 1, 2, ..., n, the value of these cash-flows at time $t < T_1$ is given by

$$V_t(S_t) = \sum_{k=1}^n e^{-r(T_k-t)} \left(\frac{\sigma_k}{\sqrt{T_k}} \left(S_t + \widehat{\nu}(T_k-t) \right) + \mu_k \right),$$

and for the case where t = 0,

$$V_0 = \sum_{k=1}^n e^{-rT_k} \left(\widehat{\nu} \sigma_k \sqrt{T_k} + \mu_k \right).$$

Option Pricing for Normally Distributed Estimates

Theorem

Real Option Value of Risky Cash-Flows Estimates. For a given set of cash-flow estimates, normally distributed with mean μ_k and standard deviation σ_k , given at times T_k , where k = 1, 2, ..., n, the value of the option at time $t < T_0$ to invest the amount K at time $T_0 < T_k$ to receive these cash flows is given by

$$RO_t(S_t) = e^{-r(T_0-t)} \left[\left(\xi_1(S_t) - K\right) \Phi\left(\frac{\xi_1(S_t) - K}{\xi_2}\right) + \xi_2 \phi\left(\frac{\xi_1(S_t) - K}{\xi_2}\right) \right]$$

where $\Phi(\bullet)$ and $\phi(\bullet)$ are the standard normal distribution and density functions, respectively, and

$$\begin{split} \xi_1(S_t) &= \sum_{k=1}^n e^{-r(T_k - T_0)} \left(\frac{\sigma_k}{\sqrt{T_k}} (S_t + \widehat{\nu}(T_k - t)) + \mu_k \right), \\ \xi_2 &= \sqrt{T_0 - t} \sum_{k=1}^n e^{-r(T_k - T_0)} \frac{\sigma_k}{\sqrt{T_k}}. \end{split}$$

Utility Maximization

• Assume exponential utility

$$u(x) = -\frac{e^{-\gamma x}}{\gamma}$$

- $\gamma \ge 0$ represents managerial risk aversion
- Manager has two options: 1) invest in the market, or 2) invest in the real option
- Goal is to maximize the terminal utility in each of the two options and determine the indifference price

Optimal Investment in the Traded Index (Merton Model)

• Invest in market only, with π_t invested in the risky asset

$$dX_t = (rX_t + \pi_t(\mu - r))dt + \pi_t \sigma dW_t$$

• And maximize expected terminal utility

$$V(t,x) = \sup_{\pi_t} \mathbb{E}\left[\left. u(X_T) \right| X_t = x \right]$$

• Applying standard arguments leads to the PDE

$$\partial_t V - \frac{1}{2} \frac{(\mu - r)^2}{\sigma^2} \frac{(\partial_x V)^2}{\partial_{xx} V} + rx \partial_x V = 0$$

• with V(T,x) = u(x), and the solution is given by

$$V(t,x) = -\frac{1}{\gamma} e^{-\frac{1}{2} \left(\frac{\mu-r}{\sigma}\right)^2 (T-t) - \gamma e^{r(T-t)x}}$$

Optimal Investment in the Real Option Project

• Wealth dynamics are given as

$$\begin{aligned} dX_t &= (rX_t + \pi_t(\mu - r)) dt + \pi_t \sigma dW_t, \ t \notin [T_0, T_1, ..., T_n] \\ X_{T_0} &= X_{T_0^-} - K \mathbf{1}_{\mathcal{A}} \\ X_{T_j} &= X_{T_j^-} + \varphi(S_j) \mathbf{1}_{\mathcal{A}}, \ j \in [1, 2, ..., n] \end{aligned}$$

where $\boldsymbol{1}_{\mathcal{A}}$ represents the indicator function equal to 1 if the real option is exercised

 The manager seeks to maximize his expected terminal utility as

$$U(t, x, s) = \sup_{\pi_t} \mathbb{E}\left[u(X_T) | X_t = x, S_t = s \right]$$

• Applying standard arguments, it can be shown that the solution to U(t, x, s) can be achieved by solving the following PDE

$$\partial_t U + r x \partial_x U + \nu s \partial_s U + \frac{1}{2} \partial_{ss} U \eta^2 s^2 - \frac{1}{2} \frac{\left((\mu - r)\partial_x U + \rho \sigma \eta s \partial_{sx} U\right)^2}{\sigma^2 \partial_{xx} U} = 0$$

Optimal Investment in the Real Option Project (con't)

Boundary conditions

$$U(T_j, x, s) = U(T_j^+, x, s)e^{-\gamma\varphi(s)}, \text{ for } j = 1, ..., n-1$$
$$U(T_n, x, s) = u(x + \varphi_n(s))$$

• Using the substitution $U(t, x, s) = V(t, x)(H(t, s))^{\frac{1}{1-\rho^2}}$ results in the simplified PDE

$$\partial_t H + \hat{\nu} s \partial_s H + \frac{1}{2} \eta^2 s^2 \partial_{ss} H = 0$$

with $H(T_n, s) = e^{-\gamma(1-\rho^2)\varphi_n(S_{T_n})}$, and $t \in (T_{n-1}, T_n]$

• Apply dynamic programming, where at each $t = T_j$, $j = \{1, 2, ..., n-1\}$, set $H(T_j, s) = H(T_j^+, s)e^{-\gamma(1-\rho^2)\varphi_j(S_{T_j})}$

The Indifference Price

• At $t = T_0$, we should invest in the real option if

$$(H(T_0^+,s))^{\frac{1}{1-\rho^2}}e^{\gamma K e^{r(T_n-T_0^+)}} \leq 1$$

• Defining f as the *indifference price*, i.e. the value of the real option, and setting U(t, x - f, s) = V(t, x) leads to

$$f(t,s) = -\frac{1}{\gamma(1-\rho^2)} \ln H(t,s) e^{-r(T_n-t)}$$

The Indifference Price for Normally Distributed Estimates

Theorem

Real Option Value of Risky Cash-Flows Accounting for Risk Aversion. For a given set of cash-flow estimates, normally distributed with mean μ_k and standard deviation σ_k , given at times T_k , where k = 1, 2, ..., n, the value of the option at time $t < T_0$ to invest the amount K at time $T_0 < T_k$ to receive these cash flows accounting for risk aversion, where the utility of the investor is given by $u(x) = -\frac{e^{\gamma x}}{\gamma}$, is given by

$$f(t,s) = -\frac{1}{\gamma(1-\rho^2)} \ln H(t,s) e^{-r(T_n-t)}$$

where

$$H(t,s) = \Phi(\widehat{B}(t,s)) + e^{\frac{\xi_t^2}{2}}\widehat{C}(t,s)\Phi(\xi_t - \widehat{B}(t,s)).$$

The Indifference Price for Normally Distributed Estimates

$$\begin{split} \xi_t &= -\gamma (1 - \rho^2) \widehat{a}_1 \sqrt{T_0 - t} \\ \widehat{a}_j &= \sum_{k=j}^n \frac{\sigma_k}{\sqrt{T_k}} e^{r(T_n - T_k)}, \quad \widehat{b}_j = \sum_{k=j}^n \mu_k e^{r(T_n - T_k)} \\ A_j &= \widehat{a}_j \left(\frac{\gamma \widehat{a}_j}{2} (1 - \rho^2) - \widehat{\nu} \right), \quad A_0 = \sum_{j=1}^n A_j (T_j - T_{j-1}) \\ \widehat{B}(t, s) &= \frac{\frac{A_0 - \widehat{b}_1 + K e^{r(T_n - T_0)}}{\widehat{a}_1} - s - \widehat{\nu} (T_0 - t)}{\sqrt{T_0 - t}} \\ \widehat{C}(t, s) &= e^{\gamma (1 - \rho^2) (A_0 - \widehat{a}_1 (s + \widehat{\nu} (T_0 - t)) - \widehat{b}_1 + K e^{r(T_n - T_0)})} \end{split}$$

Results Practical Implementation Conclu

References

Real Option Value (MMM)

Project value and real option value of the UAV project for varying correlation (note that they are independent of S_0 , ν and η)

Correlation (ρ)	0.0	0.2	0.4	0.6	0.8	1.0
Project Value (V_0)	493.69	467.31	441.49	416.35	392.00	368.54
Option Value (<i>RO</i> ₀)	199.82	173.83	148.71	124.82	102.45	82.02

Sensitivity to Risk - Standard Approach

Assumptions:

- Single cash-flow at $T_1 = 3$
- Expected value of the cash-flow: $\mu_1 = 50$
- Correlation to traded index: ho = 0.5
- Investment time: $T_0 = 2$

Sensitivity to Risk - MMM (ho = 0.5)

For a single cash-flow, the real option value is given as

$$RO_{0} = e^{-rT_{0}} \mathbb{E}^{Q} \left[\left(\underbrace{e^{-r(T_{1} - T_{0})} \left(\mu_{1} + \widehat{\nu}\sigma_{1}\sqrt{T_{1}} \right)}_{\text{Distorted Mean}} + \underbrace{e^{-r(T_{1} - T_{0})} \sqrt{\frac{T_{0}}{T_{1}}} \sigma_{1}Z}_{\text{Standard Deviation}} - K \right)_{+} \right]$$

Recall $\widehat{\nu}=-\rho\frac{\mu-r}{\sigma}$

Real Option Value - Indifference Price

(c) Real option indifference price as a function of S_t and tat $\gamma = 0.01$.

(d) Real option indifference price at $S_t = S_0$ for varying levels of risk aversion.

Sensitivity to Risk - Indifference Price

Dick Indifforance Drice Sensitivity 25 25 r RO Indiff. Price RO Indiff. Price 20 20 15 15 10L 0 10L 10 20 Risk (Δ V), ρ =0.00 30 10 20 Risk (Δ V), ρ =0.25 30 25 r 25 r RO Indiff. Price RO Indiff. Price 20 20 10L 0 10L 10 20 Risk (Δ V), ρ =0.50 30 10 20 Risk (Δ V), ρ =0.75 30 25 ſ γ =0.100 RO Indiff. Price γ =0.050 20 -γ=0.010 \rightarrow MMM ($\gamma = 0$) UNIVERSITY OF 5 10L 10 20 30 Risk (Δ V), ρ =1.00 46 / 53

Practical Implementation of the Matching Method

Assume managers supply revenue and GM% estimates

Scenario	End of Year Sales / Margin									
	3	4	5	6	7	8	9			
Optimistic	80	116	153	177	223	268	314			
	(50%)	(60%)	(65%)	(60%)	(60%)	(55%)	(55%)			
Most Likely	52	62	74	77	89	104	122			
	(30%)	(40%)	(40%)	(40%)	(35%)	(35%)	(35%)			
Pessimistic	20	23	24	18	20	20	22			
	(20%)	(20%)	(20%)	(20%)	(15%)	(10%)	(10%)			
SG&A*	10%	5%	5%	5%	5%	5%	5%			
Fixed Costs	30	25	20	20	20	20	20			
	* ~ 1	1.0	1 1 4	1 * * *	·					

⁶ Sales / General and Administrative Costs

Sales and GM% Stochastic Drivers

• Traded index

$$dI_t = \mu I_t dt + \sigma I_t dW_t$$

• Sales stochastic driver to drive revenues

$$dX_t = \rho_{SI} dW_t + \sqrt{1 - \rho_{SI}^2} dW_t^S$$

• GM% stochastic driver to drive GM%

$$dY_t = \rho_{SM} dX_t + \sqrt{1 - \rho_{SM}^2} dW_t^M$$

• Cash flow

$$V_k(t) = (1 - \kappa_k)\varphi_k^{\mathcal{S}}(X_t)\varphi_k^{\mathcal{M}}(Y_t) - \alpha_k$$

Bivariate Density of Sales and GM%

Theorem

The Bivariate Density of Sales and GM%. The bivariate probability density function between sales and GM% is given by

$$u(s,m) = \phi_{\Omega_{\rho_{SM}}} \left(\Phi^{-1} \left(F^*(s) \right), \Phi^{-1} \left(G^*(m) \right) \right) \bullet \frac{f^*(s)}{\phi \left(\Phi^{-1} \left(F^*(s) \right) \right)} \frac{g^*(m)}{\phi \left(\Phi^{-1} \left(G^*(m) \right) \right)}$$

where $\phi_{\Omega_{\alpha}}$ represents the standard bivariate normal PDF with correlation ρ , and ϕ is the standard normal PDF.

Project and Real Option Value

• Project value

$$V_{T_0}(X_{T_0}, Y_{T_0}) = \sum_{k=1}^n e^{-r(T_k - T_0)} \mathbb{E}^{\mathbb{Q}} \left[v_k(X_{T_k}, Y_{T_k}) \mid X_{T_0}, Y_{T_0} \right]$$

Real option value

$$RO_{t}(X_{t}, Y_{t}) = e^{-r(T_{0}-t)} \mathbb{E}^{\mathbb{Q}} \left[\left(V_{T_{0}}(X_{T_{0}}, Y_{T_{0}}) - K \right)_{+} \middle| X_{t}, Y_{t} \right]$$

• Risk-neutral measure $\left(\hat{\nu} = -\rho_{SI} \frac{\mu - r}{\sigma} \operatorname{and} \hat{\gamma} = -\rho_{SI} \rho_{SM} \frac{\mu - r}{\sigma}\right)$

$$\begin{aligned} \frac{dI_t}{I_t} &= r \, dt + \sigma \, d\widehat{W}_t, \\ dX_t &= \widehat{\nu} \, dt + \rho_{SI} \, d\widehat{W}_t + \sqrt{1 - \rho_{SI}^2} \, d\widehat{W}_t^S, \\ dY_t &= \widehat{\gamma} \, dt + \rho_{SI} \rho_{SM} d\widehat{W}_t + \rho_{SM} \sqrt{1 - \rho_{SI}^2} \, d\widehat{W}_t^S + \sqrt{1 - \rho_{SM}^2} \, d\widehat{W}_t^M \end{aligned}$$

Computing the Real Option

• Resulting PDE

$$rH = \frac{\partial H}{\partial t} + \hat{\nu}\frac{\partial H}{\partial x} + \hat{\gamma}\frac{\partial H}{\partial y} + \frac{1}{2}\frac{\partial^2 H}{\partial x^2} + \frac{1}{2}\frac{\partial^2 H}{\partial y^2} + \rho_{SM}\frac{\partial^2 H}{\partial x \partial y}$$

Value of the real option for varying ρ_{SI} and ρ_{SM}

Matching Method Conclusions

- The approach utilizes managerial cash-flow estimates
- The approach is theoretically consistent
 - Provides a mechanism to account for systematic versus idiosyncratic risk
 - Provides a mechanism to properly correlate cash-flows from period to period
- The approach requires little subjectivity with respect to parameter estimation
- The approach provides a **missing link** between practical estimation and theoretical frame-works

References

Berk, J., R. Green, and V. Naik (2004). Valuation and return dynamics of new ventures. *The Review of Financial Studies* 17(1), 1–35.

Block, S. (2007). Are real options actually used in the real world? *Engineering Economist* 52(3), 255–267.

Borison, A. (2005). Real options analysis: Where are the emperor's clothes? Journal of Applied Corporate Finance 17(2), 17–31.

Henderson, V. (2007). Valuing the option to invest in an incomplete market. *Mathematics and Financial Economics* 1, 103–128.

Miao, J. and N. Wang (2007, December). Investment, consumption, and hedging under incomplete markets. *Journal of Financial Economics 86*(3), 608–42.

