Datamining and Its Challenges in a Banking Environment

Chen Wei Xu Customer Knowledge Management Bank of Montreal

chen.xu@bmo.com

December 10, 1999

Data Mining

- Massive amounts of data
- Lack of a priori knowledge (especially causal relationships)
- Dynamic environment ever changing context
- Lack of data (sorry, you just said lots of data...)
- You want the data to tell you something about the customers!

Value in Customer Data

- Banks expect data to answer questions such as:
 - Will the customer buy product X? Do I need to stimulate them to buy (e.g., by mail, with incentive)?
 - Will the customer leave us in the next while? Why?
 What can I do to stop that?
 - What causes customers to reduce their share of wallet with us? Rates? Service? ...?
 - What customer segments do we have? (For marketing, product design, channel management, ...)

Types of Data

- Customer data:
 - Age, account types and balances, transactions, open/mature dates, interest rates, postal code, ...
- StatsCan Neighborhood data:
 - Avg income, RRSP contributions, estimated financial assets, age distribution, family structure, dwelling types, ...
- Other data:
 - Credit data (delinquency, credit usage, risk score,...)
 - Survey data (hobbies, spending, attitude, ...)

Customer Databases

- Millions of records, 1000+ of variables
- Month-end snapshots
- Usually RDBs
- Some history possible (e.g., 12-month), but generally insufficient for time series analysis
- Identity issues
- Stability of data definition

Example 1: Acquisition via Direct Mail

- Context: Acquire new business (products) by direct mail
- Problem: Don't know who to mail to. Random mailing creates junk mail and costs more
- Solution: Mail only to those likely to generate value
- Benefits: Better ROI, less junk mail

- Two models
 - A response model (Who would respond when mailed?)
 - A value model (How much \$ if respond?)
- Process
 - Model development
 - Model implementation target set selection
 - Campaign execution
 - Measurement & validation

- Model development
 - Objective: predict mail response/value behavior
 - Define universe
 - Take a random sample (usually n-th sample)
 - Run a pilot campaign (i.e., mail randomly)
 - Collect response & value data from campaign
 - Model creation (with held-off data for validation)
 - Regression, black-box, tree-based, and so on
 - P(Response) = f(x1, x2, ..., xn)
 - E(value|response) = g(z1, z2, ..., zm)

- Model Implementation
 - Score the universe with both models
 - Create overall score S = P(resp.) x E(value|resp.)
 - S := Expected value when mailed
 - S₀ := Expected value when not mailed (constant)
 - $\Delta S := S S_0$, or incremental value from mailing
 - Rank order customer list by ΔS
 - Cut off list at the customer where
 - Marginal profit (value-cost) becomes zero, or
 - Your maximum budget allows but marginal profit >0.

• Execution: Target customers mailed, with a random subset held off as control (no mail) ...

Fields99.ppt

- Campaign Measurement Was it a success?
 - Each target mailing generated value *a* and cost *c*
 - Each control subject generated value *b*
 - Total value generated from campaign is
 - Total Value = N(a-b-c), where N = # of mailings
- Challenges
 - Should *a*, *b* include halo effect?
 - What is the life span of *a*, *b* ?

- Model validation
 - Compare prediction and actual
 - Do it every year, for models "wear out"

Example 2: Model Fit

- Problem
 - Have n observations (Yi, X1i, ...,Xpi), i=1,...n; p large
 - Need a model (e.g., a value prediction model)
 - Y = f(X), where X is a subset of $\{X1, \dots, Xp\}$
 - Q1: How to isolate X?
 - Correlation captures linear relation (&simple nonlinear)
 - No existing knowledge about causal relations
 - Other methods (such as discrimination analysis) may not work well with continuous Y variable
 - Q2: How to determine f(.)?
 - Usually use linear approximation, but not always works
 - Infinite possibilities of nonlinear function forms
 - Polynomial order and terms?

Example 3: Distribution

• Branches to match competition service level (hours)

Example 3: Distribution

- Objective: Minimize cost of increasing branch hours (cost is a function of incremental time and branch size)
- Constraint: Match all competitors' service hours for each service area
- Can be formulated as an integer (0-1) programming problem
- Have a greedy heuristic algorithm developed (proven to be suboptimal)