

NMR Quantum Information Processing

B, CCS, T Divisions

Raymond Laflamme (in U of Waterloo from Sept.) http://qso.lanl.gov/qc E. Knill, R. Martinez, W.H. Zurek, D. Cory (MIT),

C. Negrevergene (LANL), M. Nielsen (Caltech), L. Viola (LANL)

QIP NMR experiments

# of qubits	Algorithms	Year	Reference
1112009	Gates	1996	MIT, Stanford, NC, Oxford
00110	Database Search	1998	Oxford, IBM
110110	Deutsch-Josza	1998	Oxford, IBM
11101	Quantum Simulation	1999	MIT/LANL
100001	Quantum Fourier Transform	1998	MIT, CAS
11111	Dense Coding	1998	CAS
02:00-12	Quantum Detecting Code	1999	IBM
3	GHZ state	1997	LANL, MIT
10:00	Quantum Error Correction	1997	MIT/LANL
11-110	Quantum Teleportation	1997	LANL
121210	Deutsch-Josza	1998	KAIST, India
1 11/11	Quantum Simulation	1999	MIT/LANL
011,100,	Quantum Fourier Transform	1998	MIT
1001-101	Quantum Eraser	1998	MIT 2 4 1 9 0 1 6 0 1
4	C ³ -not Gate	1999	MIT OCAL SOLUTION
- 5	Deutsch-Josza	1999	Frankfurt
12011100	Order finding	2000	STIBM SOLLARS
011010	Quantum Error Correction	2001	LANL
6	Decoupling	1998	Cambridge
7-00	Benchmark	2000	LANLOLLUUIII

Choosing a molecule

different chemical shifts
large decoherence times
strong couplings

Rudy Martinez, B-2

Stable Isotope Laboratory at Los Alamos

Quantum Gates in NMR * 1 bit gates

Rotation around x/y axis: e.g. around x Rotation around z axis:

> hard pusle: 10 s; soft pulse 1/

$$e^{-i\mu X} = \mathbb{1}\cos\mu \quad iX\sin\mu:$$
$$Z \quad Z\cos\mu \quad Y\sin\mu$$
$$Y \quad Y\cos\mu + Z\sin\mu$$

★ 2 bit gates

J coupling ~ 100 Hz

* Gradient field

 $e^{i ZZ} = 1 \cos i ZZ \sin :$ X1 X1 cos $\mu + YZ \sin \mu$

 $I_+ = X + iY \qquad e^{i\pi z}I_+$

State Preparation

 $\Omega = \frac{1}{2^n}e$

Computational cooling

 $\frac{1}{2^n}(I \quad H+$

(DiVincenzo/ Knill/ Schulman & Vazirani: quant-ph9804060)

***** Pseudo pure states

Havel & Cory 1996 Gershenfeld & Chuang 1996

 $\Omega \quad \frac{1}{2^n}I + \\ * 1 \text{ Pseudo pure qubit}$

Knill & Laflamme, PRL 81, 5672, 1998

NMR-GHZ, R.L., E. Knill, W.H. Zurek, P. Catasti, S. Vellupillai, Proc.Roy.SocA356, 1941, 1998.

Experimental Quantum Error Correction: D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel and S. S. Somaroo. PRL 81, 2152, 1998

A 7 bit quantum computer:

An algorithmic benchmark for quantum information processing, E. Knill, R. L., R. Martinez, C.-H. Tseng, Nature 404, 368-370, 2000

Complete quantum teleportation using NMR: M. Nielsen, E. Knill, R. Laflamme Nature 396, 52, 1998

Conclusion

lifif

"Many of today's practical technologies result from basic science done years to decades before. The people involved, motivated mainly by curiosity; often have little idea as to where their research will lead. Our ability to forecast the practical payoffs from fundamental exploration of the nature of things (and, similarly, to know which of today's research avenues are technological dead ends) is poor. This springs from a simple truth: new ideas discovered in the process of research are really new." Charles Townes

in How the Laser Happened.