THE FIELDS INSTITUTE

FOR RESEARCH IN MATHEMATICAL SCIENCES

GIUSEPPE BUTTAZZO University of Pisa

Some results and questions in mass optimization problems

We consider the optimization problem

 $\max\left\{\mathcal{E}(f,\Sigma,\mu) : \mu \in \mathcal{M}^+(m,\overline{\Omega})\right\}$

where $\mathcal{E}(f, \Sigma, \mu)$ is the energy associated to μ :

$$\mathcal{E}(f,\Sigma,\mu) = \inf \left\{ \frac{1}{2} \int |Du|^2 d\mu - \langle f, u \rangle : u \in \mathcal{D}(\mathbf{R}^n), u = 0 \text{ on } \Sigma \right\}.$$

The datum f is a signed measure with finite total variation (and zero average if Σ is empty), while Ω is an open subset of \mathbf{R}^n , Σ is a closed subset of $\overline{\Omega}$, and $\mathcal{M}^+(m,\overline{\Omega})$ is the class of nonnegative measures on $\overline{\Omega}$ with mass m. We show that the optimization problem above admits a solution which is a measure, not in $L^1(\Omega)$ in general. This solution comes out by solving a mass transportation problem, for a suitable distance $d_{\Omega,\Sigma}$ and with the associated Monge-Kantorovich PDE equation of the form

$$\begin{cases} -\operatorname{div}\left(\mu D_{\mu}w\right) = f \quad \text{on } \mathbf{R}^{n} \setminus \Sigma\\ w \in \operatorname{Lip}_{1}(\Omega, \Sigma), \quad |D_{\mu}w| = 1 \ \mu\text{-a.e.}, \quad \mu(\Sigma) = 0 \end{cases}$$

where $\operatorname{Lip}_1(\Omega, \Sigma)$ is the class of all Lipschitz functions on Ω with constant 1, which vanish on Σ .

We also address some problems occurring in the optimization problems which arise when we consider the Dirichlet region Σ as an unknown.