THE FIELDS INSTITUTE

ABSTRACTS 1.2

FOR RESEARCH IN MATHEMATICAL SCIENCES

MICHAEL BAROT Universidad Nacional Autonoma de Mexico

Generalized Serre-Relations (50-60) Contributed talk authors: M. Barot, D. Kussin and H. Lenzing

To any unit from q we associate a Lie algebra G(q), defined by generators and relations in the following way. For $q : \mathbb{Z}^n \to \mathbb{Z}$, we define $C_{ij} = q(c_i + c_j) - q(c_i) - q(c_j)$, where c_1, \ldots, c_n are the canonical base vectors in \mathbb{Z}^n . Then G(q) is generated by 3n elements e_i , e_{-i}, h_i $(i = 1, \ldots, n)$ and the following relations:

(R1) $[h_i, h_j] = 0$ for all i, j,

(R2) $[e_{\varepsilon i}, e_{-\varepsilon i}] = \varepsilon h_i$ for $\varepsilon = \pm 1$ and all i,

(R3) $[h_i, e_{\varepsilon j}] = -\varepsilon C_{ij} e_{\varepsilon j}$ for $\varepsilon = \pm 1$ and all i, j, j

(R ∞) $[e_{\varepsilon_1 i_1}, e_{\varepsilon_2 i_2}, \dots, e_{\varepsilon_t i_t}] = 0$ whenever $q(\sum_{\ell=1}^t \varepsilon_\ell c_{i_\ell}) > 1$.

We prove that G(q) and G(q') are isomorphic if q and q' are equivalent connected nonnegative unit forms, further (without assuming connectedness or non-negativity) G(q)and G(q') are isomorphic if q' is obtained from q by a sequence of deflations, inflations and sign- inversions.

If q is positive definite, G(q) is a finite dimensional semisimple (simply laced) Lie algebra and finitely many relations of type $(\mathbb{R}\infty)$ are sufficient. If q is connected and non-negative of corank one, G(q) is isomorphic to a (simply laced) affine Kac-Moody algebra and if q is connected and non-negative of corank two, G(q) is isomorphic to the Lie algebra associated to a (simply laced) elliptic root system, as investigated by Saito and Yoshii.