THE FIELDS INSTITUTE

FOR RESEARCH IN MATHEMATICAL SCIENCES

ANDRE BEINEKE Universitaet Bielefeld

Delta-critical quasi-hereditary algebras (25-30)

Let k be a field, Q a finite quiver, ρ an admissible set of relations and let $A := kQ/\rho$. Let S(i) be the simple module for the vertex $i \in Q_0$, P(i) the projective cover and I(i) the injective envelop of S(i). Given an enumeration π of the vertices of Q (a bijective map $\pi : Q_0 \to \{1, 2, \dots, |Q_0|\}$), define $\Delta_{\pi}(i)$ as the maximal factor module of P(i) and $\nabla_{\pi}(i)$ as the maximal submodule of I(i), both with composition factors S(j) with $\pi(j) \leq \pi(i)$.

The enumeration π is called quasi-hereditary if every module P(i) has a Δ_{π} -filtration and S(i) occurs only once as a composition factor of $\Delta_{\pi}(i)$ and of $\nabla_{\pi}(i)$ (see [CPS]). If A is tame concealed, then π will be called Δ -critical if it is quasi-hereditary and all modules $\nabla_{\pi}(i)$ are preinjective.

In this case, the modules $T_{\pi}(i)$ (the minimal modules with S(i) occuring exactly once as a composition factor of $T_{\pi}(i)$ and having a Δ_{π} - and a ∇_{π} -filtration) are partial tilting modules, $T_{\pi} := \bigoplus_{i \in Q_0} T_{\pi}(i)$ is a tilting module, and $B := \operatorname{End}(T_{\pi})^{op}$ is another tame concealed algebra. The category $\mathcal{F}(\Delta_{\pi})$ of all A-modules with a Δ_{π} -filtration has a preprojective component of type A and a preinjective component of type B (see [R]).

Happel and Vossieck classified tame concealed algebras as the path algebras of the quivers of frame types \widetilde{A}_n , \widetilde{D}_n , \widetilde{E}_6 , \widetilde{E}_7 and \widetilde{E}_8 (see [HV]). There are only finitely many tame concealed algebras of the types \widetilde{E}_6 , \widetilde{E}_7 and \widetilde{E}_8 , so for these all Δ -critical enumerations can be computed.

References

- [CPS] Cline, E., Parshall, B. and Scott, L.: Finite dimensional algebras and heighest weight categories. Journal Reine und Angewandte Mathematik 391, 85-99 (1988)
- [HV] Happel, D. and Vossieck, D.: Minimal algebras of infinite representation type with preprojective component. Manuscripta Mathematica 42, 221-243 (1983)
 - [R] Ringel, C.M.: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Mathematische Zeitschrift 208, 209-223 (1991)