THE FIELDS INSTITUTE

FOR RESEARCH IN MATHEMATICAL SCIENCES

BANGMING DENG Beijing Normal University

Monomial Bases for quantum affine sl_n (25-30)

Co-author: Jie Du Department of Mathematics, Beijing Normal University, Beijing; University of New South Wales) Let $\mathbf{U} = \mathbf{U}_v(\widehat{\mathfrak{sl}}_n)$ be the quantized enveloping algebra of affine \mathfrak{sl}_n with generators $E_i, F_i, K_i^{\pm 1}$ $(i = 1, \dots, n)$. It is well known that \mathbf{U} admits a triangular decomposition

$$\mathbf{U} = \mathbf{U}^{-}\mathbf{U}^{0}\mathbf{U}^{+}$$

where \mathbf{U}^+ (resp. \mathbf{U}^- , \mathbf{U}^0) is the subalgebra generated by the E_i 's (resp. F_i 's, $K_i^{\pm 1}$'s). By the definition, the monomials $K_{\mathbf{a}} = K_1^{a_1} \cdots K_n^{a_n}$ with $\mathbf{a} = \sum_i a_i i \in \mathbb{Z}I$ form a basis for \mathbf{U}^0 . It would be interesting to know monomial bases for \mathbf{U}^+ (and hence for \mathbf{U}^-). More precisely, let Ω be the set of words on the alphabet $I = \{1, 2, \cdots, n\}$. For each word $w = i_1 \cdots i_m \in \Omega$, let

$$E_w = E_{i_1} \cdots E_{i_m}, \quad F_w = F_{i_1} \cdots F_{i_m}.$$

Our main purpose is to find subsets $\Omega' \subset \Omega$ such that the set $\{E_w\}_{w\in\Omega'}$ forms a basis for \mathbf{U}^+ . In the investigation [2] of realizing the generic composition algebra of a cyclic quiver as the positive part of a quantum affine \mathfrak{sl}_n , Ringel constructed certain monomial bases over some so-called condensed words whose definition is rather long and complicated. In this paper, we shall describe monomial bases for a quantum affine \mathfrak{sl}_n in a more general and satisfactory way. Namely, we prove the following monomial basis theorem. Theorem.

Let $\mathbf{U} = \mathbf{U}_v(\widehat{\mathfrak{sl}}_n)$. Then there is a partition $\Omega = \bigcup_{\pi \in \Pi^s} \Omega_{\pi}$ such that, for any subsets $\Omega^{\pm} \subset \Omega$ with $|\Omega^{\pm} \cap \Omega_{\pi}| = 1$ for every $\pi \in \Pi^s$, the set

$$\{F_y K_{\mathbf{a}} E_w \mid y \in \Omega^-, w \in \Omega^+, \mathbf{a} \in \mathbb{Z}I\}$$

forms a basis for U. The proof of the theorem is based on the structure of generic composition algebra of a cyclic quiver in [2] and the idea of generic extensions in [1].

References

- [1] M. Reineke, Generic extensions and multiplicative bases of quantum groups at q = 0, Represent. Theory 5 (2001), 147-163.
- [2] C. M. Ringel, The composition algebra of a cyclic quiver, Proc. London Math. Soc. 66 (1993), 507-537.