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The irreducuble Components of Lusztig’s
Nilpotent Variety and Crystal Bases (50-60)

Let Q be a quiver without loops. We denote the quantized version of the enveloping
algebra of the negative part of the corresponding Kac-Moody-Lie algebra by U−. Lusztig
has defined varieties R(Π(Q); d)0, also called Lusztig’s nilpotent varieties, consisting of
nilpotent representations of the preprojective algebra Π(Q) of Q of dimension vector d.
It was shown by Kashiwara and Saito ([1]) that the irreducible components of the various
R(Π(Q); d)0, where d runs through all possible dimension vectors of Q, form the crystal
of U−. The principal aim of this talk is to compute the number of irreducible components
of R(Π(Q); d)0 using so- called nilpotent class representations (nc-representation) of Q

with dimensions vector d. Informally a nc- representation assigns to Q and d certain
nilpotent classes, so that the generic nc-representations are in natural bijection with the
irreducible components of R(Π(Q); d)0. Furthermore we mention certain applications:
the number of irreducible components in the intersection of a nilpotent class with the
strictly upper- trinagular matrices (in the general linear group) can be computed using
nc-representations (see [2] and [3]). Finally we relate R(Π(Q); d)0 for Q affine and d the
imaginary root to the exceptional locus in the Kleinian singularity (see also [CS]).
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