THE FIELDS INSTITUTE

ABSTRACTS 1.2

FOR RESEARCH IN MATHEMATICAL SCIENCES

KENNETH K. NWABUEZE University of Brunei

The Representation Rings of Group Codes

Let G denote a finite group code and \mathcal{J} a sets of subgroups of G which is closed with respect to conjugation and intersection with $G \in \mathcal{J}$. A (G, \mathcal{J}) -set is defined as a finite left G-set S such that $G_s \in \mathcal{J}$ for all s in S. Observe that the conditions on \mathcal{J} imply that for any $W \in \mathcal{J}$ the set G/W, of left cosets of W in G, is a (G, \mathcal{J}) -set, the G-action on G/W is defined by left multiplication

 $G \times G/W \to G/W : (h, gW) \longrightarrow hgW.$

Moreover for any two (G, \mathcal{J}) -sets S_1 and S_2 the G-sets $S_1 \times S_2$ and $S_1 \cup S_2$ are (G, \mathcal{J}) sets. In this way, the isomorphism classes of (G, \mathcal{J}) -sets form a commutative semiring $B^+(G, \mathcal{J})$ with identity $1 \in B^+(G, \mathcal{J})$, namely G/G. In this talk we study the properties of the universal ring associated with $B^+(G, \mathcal{J})$.