THE FIELDS INSTITUTE

FOR RESEARCH IN MATHEMATICAL SCIENCES

J. SCHRÖER University of Leeds

Stable endomorphism algebras of modules over special biserial algebras

This is joint work with A. Zimmermann.

Let A be a k-algebra with k an algebraically closed field. By $D^b(A)$ we denote the derived category of bounded complexes of finite-dimensional A-modules.

The stable endomorphism algebra $\underline{\operatorname{End}}_A(M)$ of an A-module M is defined as the endomorphism algebra $\operatorname{End}_A(M)$ modulo all endomorphisms which factor through projective A-modules.

Our aim is to study stable endomorphism algebras of modules without self-extensions over one of the main classes of tame algebras, the socalled special biserial algebras. Our main result is the following:

Theorem. Let A be a special biserial algebra, and let M be an A-module. If $\operatorname{Ext}_{A}^{1}(M, M) = 0$, then $\operatorname{End}_{A}(M)$ is a gentle algebra.

Gentle algebras are a narrow subclass of the class of special biserial algebras, so one should regard this outcome as very surprising.

This theorem has the following consequence. By T[i] we denote the usual shift of a complex T in $D^b(A)$ by *i* degrees.

Corollary. Let A be a finite-dimensional gentle algebra, and let T be a complex in $D^{b}(A)$. If $\operatorname{Hom}_{D^{b}(A)}(T, T[1]) = 0$, then $\operatorname{End}_{D^{b}(A)}(T)$ is a gentle algebra. In particular, any algebra B, which is derived equivalent to A, is gentle, and (up to Morita equivalence) there are only finitely many such algebras B.