THE FIELDS INSTITUTE

ABSTRACTS 1.2

FOR RESEARCH IN MATHEMATICAL SCIENCES

LUISE UNGER University of Hagen

On a partial order of tilting modules

This is a report on some joint work with Dieter Happel. Let Λ be an artin algebra over a commutative ring and let mod Λ be the category of finitely generated left Λ -modules. For a module $M \in \text{mod}\Lambda$ we denote by $\text{pd}_{\Lambda}M$ the projective dimension of M.

A module $T \in \text{mod}\Lambda$ is called a tilting module if (i) $\text{pd}_{\Lambda}T < \infty$, if (ii) $\text{Ext}^{i}_{\Lambda}(T,T) = 0$ and if (iii) there exists an exact sequence $0 \to {}_{\Lambda}\Lambda \to T^{0} \to \cdots \to T^{r} \to 0$ with $T^{i} \in \text{add}T$ for all $0 \leq i \leq r$. Here addT denotes the subcategory of mod Λ whose objects are direct sums of direct summands of T. We say that a tilting module is basic if in a direct sum decomposition of T the indecomposable direct summands of T occur with multiplicity one.

Following Auslander and Reiten we consider for a basic tilting module the right perpendicular category

$$T^{\perp} = \{ X \in \text{mod}\Lambda \mid \text{Ext}^{i}_{\Lambda}(T, X) = 0 \}.$$

We consider the set \mathcal{T}_{Λ} of all tilting modules over Λ up to isomorphism. Following Riedtmann and Schofield we define a partial order \leq on \mathcal{T}_{Λ} . For $T, T' \in \mathcal{T}_{\Lambda}$ we set $T \leq T'$ provided $T^{\perp} \subset T'^{\perp}$. Moreover Riedtmann and Schofield defined the quiver \mathcal{K}_{Λ} of tilting modules as follows. The vertices are the elements of \mathcal{T}_{Λ} . There is an arrow $T' \to T$ if $T' = M \oplus X, T = M \oplus Y$ with X, Y indecomposable and there is an exact sequence $0 \to X \to \widetilde{M} \to Y \to 0$ with $\widetilde{M} \in \text{add}T$. We denote by \mathcal{K}_{Λ} the underlying graph of \mathcal{K}_{Λ} .

Riedtmann and Schofield raised the question whether \mathcal{K}_{Λ} is the Hasse diagram for $(\mathcal{T}_{\Lambda}, \leq)$. We outline the proof that this is indeed the case and discuss the existence of minimal elements for $(\mathcal{T}_{\Lambda}, \leq)$.