1. RAMSEY THEORY AND BANACH SPACES, FIELDS INSTITUTE, FALL 2002. PROBLEM SET #2 September 26, 2002

Hand in the solutions to exercises #1(4), #2, #3, #4(1), #5 and #6. Due date is October 7, 2002.

Exercise 1. Use your favorite instance of compactness, Ramsey's theorem and/or Erdös-Rado theorem to prove the following:

- (1) For all triples of natural numbers n, d and k there is a natural number m such that for every $f: [m]^d \to k$ there is an f-homogeneous $S \subseteq m$ of size n.
- (2) For all pairs of natural numbers d, k there is a natural number m such that for every function $f: [m]^d \to k$ there is an f-homogeneous $S \subseteq m$ such that $|S| \ge \min(S)$.
- (3) A function $f: [m]^d \to m$ is regressive if $f(s) < \min s$ for all s. A set S is min-homogeneous for f if f(s) = f(t)for all s and t in $[S]^d$ such that $\min(s) = \min(t)$. Prove that for all natural numbers n and d there is a natural number m such that for every regressive $f: [m]^d \to m$ there is a min-homogeneous $S \subseteq m$ of size n.
- (4) Prove that for every natural number d there is a natural number m such that for every regressive $f: [m]^d \to m$ there is a min-homogeneous $S \subseteq m$ such that $|S| > \min(S)$.

By T we denote the so-called *Tsirelson's space*, as defined in class. Note that this is the dual of the space originally constructed by B. Tsirelson. By $||x||_T$ we denote the T-norm of a vector x. By $\{e_i\}_{i=1}^{\infty}$ we denote the standard basis for $\mathbb{R}^{\mathbb{N}}$. So for a vector $x = \sum_{i=1}^{\infty} a_i e_i$ we can write $||x||_{\ell_1}$, $||x||_T$, to denote its ℓ_1 -norm or its *T*-norm, respectively. (Note that some of the values may be infinite.)

Exercise 2. Find a spreading model for T.

ercise 3. (1) Prove¹ that for every $\varepsilon > 0$ there is a vector $x = \sum_{i=1}^{\infty} a_i e_i$ such that $\varepsilon \|x\|_{\ell_1} > \|x\|_T$. (2) For each $\varepsilon > 0$ explicitly find a vector x such that $\varepsilon \|x\|_{\ell_1} > \|x\|_T$. Exercise 3.

Exercise 4. Let X be a compact Hausdroff space. Consider X^X with the product topology and the composition operation.

- (1) Show that X^X is a right-topological semigroup.
- (2) Show that X^X is not a left-topological semigroup unless X is discrete. (3) For what functions $g \in X^X$ is the operation $f \mapsto g \circ f$ continuous?

(1) Describe the idempotents in X^X . Exercise 5.

- (2) Give some examples of left and right ideals of X^X .
- (3) Find a minimal left ideal of X^X .

Exercise 6. Describe the ordering < on the idempotents of X^X . (That is, give a description of when f < g holds for two idempotents f and g of X^X .) What are the minimal idempotents of X^X ?

For $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$ define $A - n = \{m - n : m \in A, m - n > 0\}$. For ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} define

$$\mathcal{U} + \mathcal{V} = \{A \subseteq \mathbb{N} : \{n \in \mathbb{N} : A - n \in \mathcal{U}\} \in \mathcal{V}\}$$

Exercise 7. Show that the map $f: \beta \mathbb{N} \to \beta \mathbb{N}$ defined by $f(\mathcal{U}) = \mathcal{U} + \mathcal{U}$ is not continuous.

E-mail address: ifarah@fields.utoronto.ca URL: http://www.math.yorku.ca/~farah

¹You may use the properties of T proved in the summer course.