

Some set-theoretic problems from convexity theory

Menachem Kojman

Ben-Gurion University of the Negev

Convexity

- 6 Let V be a real-linear space. A set $C \subseteq V$ is convex if for all $x, y \in S$ the line segment $[x, y] := \{\alpha x + (1 - \alpha)y : \alpha \in [0, 1]\}$ is contained in S.
- 6 the convex hull $\operatorname{conv}(X)$ of a set $X \subseteq V$ is the intersection of all convex sets containing X, or, equivalently, obtained from X by repeatedly adding all [x, y] in ω steps. $\operatorname{conv}(X) = \bigcup \{\operatorname{conv}(Y) : Y \in [X]^{<\aleph_0}\}.$
- 6 Caratheodory's theorem: if $d < \infty$ and $X \subseteq \mathbb{R}^d$ then $y \in \operatorname{conv}(X)$ iff there is some $A \in [X]^{\leq (d+1)}$ so that $y \in \operatorname{conv}(A)$.
- 6 A set $X \subseteq S \subseteq V$ is defected in S if $conv(X) \not\subseteq S$.

Convex covers

- Given $S \subseteq V$, let I(S) be the ideal generated over S by all convex subsets of S. The covering number of this ideal, Cov(I(S)) is the number of convex subsets of Srequired to cover S, called also the convexity number of S and sometimes written $\gamma(S)$.
- ⁶ $\gamma(S)$ is the chromatic number of the hypergraph (S, E) where *E* is the collection of finite defected subsets of *S*.
- 6 If $\gamma(S) \leq \aleph_0$ we say that S is countably convex.
- Quite a few set-theoretic problem result from studying the structure of either countably or uncountably convex sets in Banach spaces.

Separating the countable from the uncountable part

Work now in a second countable topological vector space *V*. Given a set $S \subseteq V$, let $A = \bigcup \{S \cap u : u \text{ basic open and } \gamma(S \cap u) \leq \aleph_0 \}$. Let $B = S \setminus A$. So:

- 6 $\gamma(A) \leq \aleph_0$
- A is open; so *B* is closed.
- 6 *B* is perfect.
- $\circ \ \gamma(S) > \aleph_0 \iff B \neq \emptyset$

Effective convexity numbers

Depending on the dimension and on the descriptive complexity of the set S, there are two effective ways to compute the convexity number of S.

- 6 A subset P ⊆ S is k-clique (k ≥ 2) if all k-subsets of P are defected in S. A perfect k-clique P ⊆ S is an effective evidence that γ(S) = 2^{ℵ₀}.
- ⁶ On the other hand there is a rank function $\rho_S(x)$ which measures the convex complexity of a point $x \in S$, and in some cases provides countable convex covers effectively (Kojman 2000).

Part I: Countable convexity

6 The rank function: for every ordinal α ,

 $\rho_{S}(x) \geq \alpha \iff (\forall \text{ open } u \ni x)(\forall \beta < \alpha)$ $(\exists \text{ defected } Y \subseteq u) \bigwedge_{y \in Y} \rho_{S}(y) \geq \beta$

- A point has rank ≥ α if it is a limit of defected configurations of points of arbitrarily large rank below α.
- 6 There is an ordinal $\alpha(S) < \omega_1$ so that for all $x \in S$, if $\rho_S(x) > \alpha(S)$ then $\rho_S(x) = \infty$

- There is an effective way to cover $\{x \in S : \rho_S(x) \le \alpha\}$
- by countably many convex sets: for every point of rank $\beta \leq \alpha$, there is an open neighborhood in which the convex hull of all points of the same rank is contained in *S*.
- 6 Call $K(S) = \{x \in S : \rho_S(x) = \infty\}$ the convexity radical of *S*.
- 6 It can happen that $K(S) \neq \emptyset$ but $\gamma(S) \leq \aleph_0$ in an F_{σ} set. Let *S* be the union of all vertical lines at rational distance from the *y*-axis.
- 6 A closed subset *S* of a Polish vector space is countably convex iff $K(S) = \emptyset$.

ContCols - p.7/23

Application: The unit sphere in C(K)

Let *K* be a compact metric space, and let C(K) be the Banach space of all continuous real functions on *K*, with the sup norm. Let $S(K) = \{f \in C(K) : ||f|| = 1\}$ denote the unit sphere in C(K).

If K is uncountable, S(K) is not countably convex.

Theorem. If K_1, K_2 are compact metric spaces and $\rho(S(K_1)) = \rho(S(K_2)) < \infty$ then $K_1 \cong K_2$.

The following hold for G_{δ} sets (Fonf-Kojman 2001):

- 6 in a finite dimensional G_{δ} set S, the radical K(S) is always nowhere-dense in S.
- In dimension $d \leq 3$, a countably convex G_{α} set cannot contain a dense in itself clique.
- In dimension $d \ge 4$ there is a countably convex G_{δ} set with a dense in itself 2-clique.
- 6 In every infinite dimensional Banach space there is a countably convex G_{δ} set S which contains a 2-clique which is dense in itself and in S.

Let

$$L(t) = (t, t^2, t^3, t^4)$$

and let $L = \{L(t) : t \in [0, 1]\}$

Let *S* be the convex hull of *L* from which we remove, for any two rational $t_1, t_2 \in \mathbb{Q} \cap [0, 1]$, the mid-point $(L(t_1) + L(t_2))/2$.

S is a G_{δ} set and $\{L(t) : t \in \mathbb{Q} \cap (0, 1)\}$ is a dense in itself 2-clique. Why is *S* countably convex?

For $t_1, t_2 \in [0, 1]$, $(x - t_1)^2 (x - t_2)^2 = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$.

Let $T : \mathbb{R}^4 \to \mathbb{R}$ be defined by

 $T(v_1, v_2, v_3, v_4) = a_0 + \sum_{i=1}^4 a_i v_i$. For all $t \in [0, 1]$, $T(L(t)) = T(t, t^2, t^3, t^4) = (t - t_1)^2 (t - t_2)^2 \ge 0$. Thus, $L(t_1), L(t_2)$ are on a supporting hyperplane.

ContCols – p.10/23

Suppose $S = \bigcup C_n$ is a G_{δ} set and $P \subseteq S$ is a dense in itself 2-clique. Then one of the C_n in somewhere dense in the closure of P.

Get: a dense in itself subset on the boundary of a convex subset, with any two points connected via the boundary. Then there is a plane which contains a dense in itself subset of *P*. Why? Because in \mathbb{R}^3 , any simplicial polytope with 5 vertices or more contains an inner diagonal. Similarly, for *k*-cliques with k > 2, use the fact: every simplicial polytope in \mathbb{R}^3 with 4k + 1 vertices or more has an inner polytope with d + 1 vertices.

Part II: Uncountable convexity

If $S \subseteq V$ is closed, then $K(S) = \emptyset \iff \gamma(S) \le \aleph_0$, because the the closure of a convex set is conves; therefore the intersection of a convex subset of *S* with K(S) is nowhere dense.

What meager ideal are realized as convexity ideals in which dimensions? Can we learn more about meager ideals in general from those examples?

Digression: Covering by Meager ideals

- ⁶ Let $\mathcal{M}(X)$ denote the meager ideal over a perfect Polish space X, and let $Cov(\mathcal{M}(X))$ denote the number of members $\mathcal{M}(X)$ necessary to cover X (which is always uncountable by the Baire theorem).
- 6 A meager ideal is any ideal $I \subseteq M(X)$ for a perfect Polish X.
- Goldstern-Shelah: there is a model of set theory in which ℵ₁ different uncountable cardinals are realized as the covering numbers of simply defined meager ideals. So the landscape is complicated.

Meager sets can be big in other senses:

- 6 $\mathbb{R} = A \cup B$, A meager, B of Lebesgue measure 0.
- In Forcing terminology: adding a random real makes the set of ground model reals meager.
- 6 Thus, after adding \aleph_1 random reals, \mathbb{R} is covered by \aleph_1 meager sets: It is consistent that $|\mathbb{R}| = \aleph_{100}$ and $\operatorname{Cov}(\mathcal{M}) = \aleph_1$

Big and trivial meager ideals

- ⁶ The consistency of $Cov(\mathcal{M}) \ll 2^{\aleph_0}$ will be taken as a definition that \mathcal{M} is a big meager ideal; similarly, any meager I is big if it is consistent that $Cov(I) \ll 2^{\aleph_0}$.
- 6 On the other hand, a meager ideal $I \subseteq \mathcal{M}$ is called trivial if $ZFC \vdash Cov(I) = 2^{\aleph_0}$.
- 6 Example: the ideal of countable subsets of \mathbb{R} is trivial.

Another example

The ideal generated over \mathbb{R}^2 by graphs of real-analytic functions and their inverses.

ContCols - p.16/23

Meager ideals from convexity

For every closed uncountably convex $S \subseteq \mathbb{R}^d$, the ideal I(S) on K(S) is meager.

Example. The ideal generated by 2-branching perfect subtrees of 3^{ω} is big and is isomorphic to the convexity ideal of the following set:

\mathbb{R}^n and the dimension conjecture

Theorem. (Geschke-Kojman 2002) for all n > 2 there are closed sets $S_1, S_2, S_{n-1} \subseteq \mathbb{R}^n$ so that for every sequence of cardinals $\kappa_1 > \kappa_2 > \cdots > \kappa_{n-1}$, each with uncountable cofinality, it is consistent that $\gamma(S_i) = \kappa_i$.

Conjecture. For every n, it is consistent that n different uncountable cardinals can be realized as convexity numbers of closed subsets of \mathbb{R}^n , but not more.

(Geschke-Kojman-Kubis-Schipperus 200?) The dimension conjecture holds in \mathbb{R}^2 ! For every close $S \subseteq \mathbb{R}^2$, either S contains a perfect clique, or else $\gamma(S)$ is equal to the homogeneity number $\mathfrak{hm}(c)$ of some continuous pair coloring (geometric proof).

A closed $S \subseteq \mathbb{R}^2$ contains a perfect 3-clique iff in the Sacks extension its convexity number remains continuuum.

In fact, the nontrivial convexity ideals of closed sets in \mathbb{R}^2 are a new type of very small — yet nontrivial — meager ideals.

Is $I(c_{\text{max}})$ realizable as a convexity ideal of a closed set in \mathbb{R}^2 ?

More connections and more problems

- Is there a smallest nontrivial meager ideal?
- Is $I(c_{\text{max}})$ the smallest nontrivial meager ideal?
- A stronger regularity condition on functions could perhaps produce a smaller meager ideal. But: analytic is too strong; differentiable is open!

 $\mathfrak{hm}(c_{\max})$ $\operatorname{Cov}(\mathcal{L}ip(\mathbb{R})) \ge \operatorname{Cov}(\mathcal{L}ip(\omega^{\omega})) = \operatorname{Cov}(\mathcal{L}ip(2^{\omega})) = \mathfrak{hm}(c_{\min})$ $\operatorname{Cov}(\operatorname{Cont}(\mathbb{R})) = \operatorname{Cov}(\operatorname{Cont}(\omega^{\omega})) = \operatorname{Cov}(\operatorname{Cont}(2^{\omega}))$ O

ContCols - p.23/23

 2^{\aleph_0}