THE FIELDS INSTITUTE

FOR RESEARCH IN MATHEMATICAL SCIENCES

ABSTRACTS 1.2

JEAN SAINT RAYMOND Universite Paris VI

A DOUBLE-TREE REPRESENTATION FOR BOREL SETS

It is a classical result by Kuratowski that for any Borel $\Pi_{1+\xi+1}^{0}$ set $A \subset \omega^{\omega}$ there exists a continuous bijection f from ω^{ω} onto ω^{ω} with inverse mapping of class $\xi+1$ natorial version of this result: More precisely to any Borel $\Pi_{1+\xi+1}^{0}$ set $A \subset \omega^{\omega}$ we associate a decreasing family $(R_{\eta})_{\eta \leq \xi}$ of tree relations with domain $\omega^{<\omega}$ (so $R_{\eta} \subset \omega^{<\omega} \times \omega^{<\omega}$) with R_{0} the standard extension relation on $\omega^{<\omega}$, each $R_{\eta+1}$ is "large" in R_{η} , and moreover the last relation R_{ξ} is generated by two tree relations R^{+} (associated to A) and R^{-} (associated to A^{c}). The notion of largeness involved here is purely algebraic; however it insures that the canonical mapping which to any infinite branch α relatively to R_{ξ} , assigns the unique infinite branch β relatively to R_{0} containing α satisfies Kuratowski's Theorem, that is $\alpha \mapsto \beta$ is a continuous bijection and its inverse mapping $\beta \mapsto \alpha$ is of class $\xi + 1$.

This representation is used in a crucial way to prove new results on Borel selectors.