Banach spaces with small operator algebras.

Spiros A. Argyros*

This is joint work with J. Lopez-Abad[†] and S. Todorcevic[‡].

We present a reflexive Banach space X_{ω_1} with a transfinite basis. $(e_{\alpha})_{\alpha < \omega_1}$ with the following properties, among others:

- 1. There is no unconditional basic sequence in X_{ω_1} .
- 2. Each block sequence $(x_n)_{n < \omega}$ relative to the basis generates an Hereditarily Indecomposable (HI) space.
- 3. Each operator $T \in \mathcal{L}(X_{\omega_1})$ is of the form $T = T_f + S$, where S is a strictly singular operator and where T_f is defined by $T_f(e_\alpha) = f(\alpha)e_\alpha$ for certain continuous function $f : \omega_1 \to \mathbb{R}$.
- 4. X_{ω_1} is not isomorphic to any proper subspace.
- 5. X_{ω_1} is not isomorphic to any non trivial quotient.
- 6. The only projections are of the form $P_{I_1} + \cdots + P_{I_n} + S$, where I_i are intervals of ordinals, P_{I_i} are the natural projections associated to I_i , and S is strictly singular.
- 7. The basis $(e_{\alpha})_{\alpha < \omega_1}$ is nearly spreading. In particular, $(e_n)_{n < \omega}$ is a nearly spreading basis¹ for the reflexive HI space $\overline{\langle e_n \rangle_{n < \omega}}$, which makes the space considerably different from the HI space by Gowers-Maurey.

^{*}Department of Mathematics, National Technical University of Athens sargyros@math.ntua.gr

[†]Université Paris VII abad@logique.jussieu.fr

[‡]CNRS - Université Paris VII stevo@math.jussieu.fr

¹There is some K > 0 such that for any finite set $\{k_1 < \cdots < k_n\}$ of integers and any integer N there is some $\{l_1 < \cdots < l_n\}$ with $N \leq l_1$ such that the operator T defined by $T(e_{k_i}) = e_{l_i}$ is a K-isomorphism.