THE FIELDS INSTITUTE

FOR RESEARCH IN MATHEMATICAL SCIENCES

DENNY H. LEUNG National University of Singapore

 ℓ^1 -spreading models in mixed Tsirelson spaces

Joint work with Wee Kee Tang We consider the problem of determining the existence of higher order ℓ^1 -spreading models in mixed Tsirelson spaces. Let (θ_n) be a nonincreasing null sequence in (0,1) such that $\theta_{m+n} \geq \theta_m \theta_n$ for all m, n. Argyros, Deliyanni and Manoussakis proved that if $\lim \theta_n^{1/n} = 1$, then every block subspace of $T[(\theta_n, \mathcal{S}_n)_{n=1}^{\infty}]$ contains an ℓ^1 - \mathcal{S}_{ω} -spreading model. We have the following results.

- 1. The mixed Tsirelson space $T[(\theta_n, \mathcal{S}_n)_{n=1}^{\infty}]$ contains an $\ell^1 \mathcal{S}_{\omega}$ spreading model if and only if $\lim_n \lim_{n \to \infty} \sup_m \theta_{m+n} / \theta_m > 0$.
- 2. Let X be a block subspace of the mixed Tsirelson space $T[(\theta_n, \mathcal{S}_n)_{n=1}^{\infty}]$. The following are equivalent.
 - (a) The Bourgain ℓ^1 -index of X is $\omega^{\omega \cdot 2}$.
 - (b) X contains an ℓ^1 - \mathcal{S}_{ω} spreading model.
 - (c) Every normalized block sequence in X has a further normalized block (x_n) that is equivalent to the sequence (e_{k_n}) . Here (e_k) is the unit vector basis of $T[(\theta_n, \mathcal{S}_n)_{n=1}^{\infty}]$ and $k_n = \max \operatorname{supp} x_n$.

Moreover, if every block subspace X has the equivalent properties above, then $T[(\theta_n, S_n)_{n=1}^{\infty}]$ is arbitrarily distortable.

Note that the result of Argyros et al. can be deduced from (2).