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Modelling Assumptions

Schematic Diagram of a Fully-Developed Avascular Tumour

�

1-dimensional, radially-symmetric growth

�

Tumour contains uniform population of cells

�

Single, growth-rate limiting nutrient (chemical), which is supplied at a constant rate
from the surrounding medium

�

Local nutrient concentration determines whether cells proliferate, become
quiescent or die

�

Key physical variables�

Tumour radius,

� �� �

�

Nutrient concentration, � ����� � ��

Internal boundaries,

�
	 �� �

and

�
� � � �
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Model Development (continued)

Nutrient Concentration, � ����� � �

�

rate of change
of �


�

�

flux due to
diffusion


�

�

rate of
consumption

�
�

� �
�� �

�
� �

�
��

�
� �

� �
��

�
� � � �� �� �	 � �
� ��

where

� � diffusion coefficient (assumed constant) and

� � �� �� �	 � ��� � � �� ��� � ��� �

i.e. all viable (non-dead) cells consume nutrient at the constant rate

�
.

Nutrient boundary and initial conditions

� �
�� � � on � � � (SYMMETRY)

� � �� on � � � �� �

� ����� � � � �� ��� �� specified
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Model Development (continued)

Outer Tumour Radius,

� �� �

�

rate of change of
tumour volume


�

�

rate of cell
proliferation


�

�
rate of

cell death

�
�

�
��

� � � � �
�

�
�

���� � 	 
 � ��� � � �� ��

where

� �� � �� �� �	 � �
� � � � �� ��� � �	 �

and

	 � 	 � �� �� �	 � �
� � � � ������� �

apoptosis

� � � � � � �
� � � �� � � �

necrosis
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Model Development (continued)

Notes:

�

Proliferation restricted to proliferating, non-quiescent regions where it occurs at
rate proportional to �

�

2 cell death mechanisms:�

Apoptosis occurs for all values of �

�

Necrosis occurs when � becomes too low to sustain live cells�

Since � � � ��� � � � , we can perform

�� � �

- integrations to obtain following
integro-differential equation for

� �� �

:

� � � �
�� �

� �
�

�� � �� �� �	 � �
� � � 	 � �� �� �	 � �
� � 
 � � ��

with

� �� � � � � �� � prescribed
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Model Development (continued)

Internal Boundaries,

�
	 �� �

and

�
� �� �

�

Uniformly proliferating tumour

� ����� � �� �	 � � � � �� � �� � � � �	 � �
� � �

�

Intermediate-sized tumour

� � � � �� � �� � �

such that � �  � ����� � �! �	

� �
� � �  �	  �

with � � �	 � � � � �	

�

Well-developed tumour

� � � � �� � �� � �

such that � ����� � �! � �  �	

� �  �
�  �	  �

with � � �	 � � � � �	 and � � �
� � � � � � �
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Model Summary

� �
�� �

�
� �

�
��

�
� �

� �
��

�
� � � ��� � �
� �

� � � �
�� �

� �
�

" � �� � � � �
� � � � ��� � � � � � � �
� � � �# � � ��

either

�	 � � if �� �	 �� or � � �	 � � � � �	

either

� � � � if �� � � �� or � � �
� � � � � ��

� �
�� � � at � � �

� � �� on � � �

� ����� � � � �� ��� �� � � � � � �� � prescribed
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Nondimensionalisation

� � � � �� � � � � �� � � �� ��

� � � � �� �	 � � � �	 � ��� � � � ��
where � �� � �� � � , etc are dimensionless variables and

�� �� �
, etc are typical nutrient

concentrations, etc

Rewrite model equations in terms of � � , etc

� � �
�� � �

� � �
� �

� �
� � �

�
�� �

�
� � �

� � �
�� �

�
� � �� ��� � � � �� �

� � � � � �
�� � � � � � � �
�

� � � � � � � � � �� � � � � �� � � � � � � �
�

�� � � � � � � �� � � � � � � � �� �

Timescales implicit in the model equations include

�

The nutrient diffusion timescale�

The tumour doubling timescale

�

The nutrient consumption timescale
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Nondimensionalisation (continued)

In practice ��
�
	

nutrient diffusion
timescale� � �� �

� mins or hours

�
�
� �

��
�
	

tumour doubling
timescale� �� � �

� weeks

�
�
�

We follow tumour’s development and, hence, focus on longer timescale, choosing

� �
�

� �

and make the following quasi-steady assumption in the nutrient equation

� � � � � � �
�
� � � � � � ��
� �

Then nutrient equation becomes

� �
�

� � �
�

�� �
�
� � �

� � �
�� �

�
� � � � ��� � � � �� �

where

� � �
� � �

� � � � � �
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Nondimensional Model Equations

� �
�

� � �
�

�� �
�
� � �

� � �
�� �

�
� � � � ��� � � � �� �

� � � � � �
�� � �

� � �
�

" � � � ��� � � � �� � � � �� � � �� � � � �� � � � �# � � � �� �

either

� �	 � � if � � � � �	 �� or � � � � �	 � � � � � � �	

either

� �� � � if � � � � �� �� or � � � � �� � � � � � � ��

� � �
�� � � � at � � � �� � � � � �� on � � � � �� � � � � � � � �� � prescribed

� � �
� � �

� � � �� �
���
�� � �� �

� �
� � � �� � �� �� � �	 � �	 �� � �� � � � �

Notes:�

Henceforth we omit �s for clarity

�

We could choose

� � � � to eliminate �� . Since we want to investigate effect of
varying �� , we retain �� as an explicit model parameter

�

Similarly, we choose not to scale lengths with

� �
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Model Simplification

Our simple choices of the tumour cell proliferation rate, etc mean that

� �

analytical expressions for � � � � ��� �� �
	 � �
� �

� �

algebraic equations relating

�
	 � �
� and

�

�

Model reduces to ODE for

�

and algebraic equations for

� 	 and

���

The form of these relations depends on

� �� �

Case 1:

�  � �  � � �� � �	 �� �

� ����� � � � �� �
�
�

� � � � � � � with

�	 � � � �
� since �� �	 � � � � �� � �

� � � � �
�� �

� �
�

� � � ��� � � � ��

� � �
�� �

�
�

�
�� �

� � �
�� � ��� �

Here tumour contains proliferating cells only.
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Case 1:

� � � � � � ��� � 	 � � 
� �

Note:

� ����� � � � �� �
�
�

� � � � � � �

� � �� � � � �� � � � �� �
� � �
� � �	 when

� � �
�

� � �� � �	 �

i.e. model ceases to be valid when

� � � � � �� � �	 �� �

This marks the appearance of a central region of quiescence, with

� 	 � �

(case 2)
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Case 2:

� ��� � 	 � � 
� � � � � � � � � � 	 � 	 
 � �

� � ��� � � � �� �
�
�

� � � � � � �

with

� �	 � � � �
�

� � �� � �	 �

and

�
� � � since �� � � � � � � �� � �

Then

� � � �
�� �

� �
�

� �� ��� � �	 � � �� � � � ��

� �
�

� �
�� �

�
�� �

� � �
�

� �
� �

� �	
� �

 � � � �
� �

�
� �

� �	
� �


� ���

Tumour contains proliferating and quiescent cells

Model comprises ODE for

�

and algebraic equation for

� 	
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Case 2:

� ��� � 	 � � 
� � � � � � � � � � 	 � 	 
 � �

Notes:

� � ����� � � � �� � �� � � � � � � � � � � � � � � �� � � � �� � � � �� �

� models breaks down when

� � � � � �� � � � �� �

� appearance of central necrosis, with

� � � �

(case 3)

�

Differentiating equation for

�
	 with respect to

�

, model reduces to 2 ODEs:

� �	�� �
�

�	
� �

�� and

� �
�� �� � �

�

Since

�	  �

, we deduce

� � �	�� � � � � ��� �

i.e. quiescent region grows more rapidly than outer tumour boundary
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Case 3: (

� ��� � 	 � 	 
 � � � � �

)

� � ��� � � �
��
����

���
� � �  �  �
�

� � � � ��� � �
� � � ��� � � �
� �� �� �
�  �  �

with �
� � � � �� � � � � �

� � �
���

�
� � � � � � ��� �
�

�
� � �	

� �	 � � � � �
� � �
�
�

�	
� � � � � � �
��	
�

and

�
�

� �
�� � � �

�
� �

� �	
� �


�

� ��� � � � � ��
� �

 � � � �
� �

�
� �

� �	
� �



�
� � ��
�

�
� �

� �	
� �

 � � � ��
� �

�
� �

� �	
� �
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Model Analysis: Equilibrium Solutions

For steady state solutions,

�
�� � � in simplified model equations.

For case 1

�	 � �
� � � and

� � � � �� �
� � �
�� � ��� �

� � � � or
� � �
��

� � �� � ��� �

The nontrivial solution is valid iff �� �	 � � � � �� � �

. Now

� �� � �� �
� � �
� � �	 � ��  ��

� �
� ��� � �	

�
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Model Analysis: Equilibrium Solutions

For case 2

��� � � � �	 � � � �
�

� � �� � �� �

and

� �
�
�� �

� � �
�

� � � � �
� �

�
� �

� �	
� �


� ��

This solution is valid iff

�
� � �� � �	 �  � �  � � � �� � � � �
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Link with Spatially-Uniform Models

For case 1,

� �
�� �

�
�

�
�� � ��� �

� � �
��

�

Let

� � � � � �� � � volume of tumour. Then

� �
�� � � � � � � �
�� � �

�
�� � ��� �

�
��

� �
� �

� � � �
� � � � 

� � �
�� �

�� �
�

�� � �
� �

�
� ��

where

� � �� �� � �
�

� � �� � ��� �� � �
� ��

� ��
� � �� � ��� �� � � �

i.e. model equivalent to model 3 of lecture 1, with � � �� �

.
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Model Analysis (continued)

In general, kinetic terms etc will be nonlinear and resulting models may not yield simple
analytical solutions

In such cases, we must use numerical methods to construct approximate solutions.

We may be able to make analytical progress by studying special cases for which the
model equations simplify

Three cases that may be of interest are:

�

Small tumour analysis (

�  � � �

)

�

Onset of necrosis (

�  � � � �

)

�

Fully-developed tumours with thin proliferating rims (

�  � � � � � �

)
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1. Small Tumour Analysis (

� � � � �

)

�

If

��� � � and

�  � � �

then

� � �� � � � � �� � �

and

� �
�� � � �� � ��� � �
�

� � � � � � � � � ���� � � � �� � ��� � �
�

�

Tumour’s growth rate depends on the balance between proliferation and apoptosis

�

If ��  �� then

� �� �� �

as

� � � i.e. the tumour-free solution is linearly
stable: insufficient nutrient � apoptosis dominates proliferation

�

If �� � ��� then tumour grows: tumour-free solution is linearly unstable.
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2. Onset of Necrosis (

� � � 	 � �

)
�

When

�  � � � �	 � �

�
�

� �
�� � � �

�
� �

� ��
� �


�

� �� � � � � ��
� �

 � �
� �

�
� �

� ��
� �


�

��
�

� � �
�
�

�
�

with

�
� � � � �� � �� � �

� � �
�
�

�
� � � � � � �
� �
�

�

We introduce

�  	 � �

and assume

� � �� �	 � � �	 � � � and

�
� �	 �
� �

�

Substituting in the algebraic identity and equating coefficients of

� �	 �

we deduce

� �� �
�

� � �� � �� �

� �� �

constant

� � � � �� � � �
� � �� �
� ��

�

Note:� �� � radius at which necrosis is initiated� � �	 � �

variations in

�

and

� �	 �

variations in

� � � rapid evolution of necrotic
core while overall tumour volume remains approximately constant
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2. Onset of Necrosis (

� � � 	 � �

)

�

Substituting with

�

and

� � in the ODE

� �	 �
��

� � � ��� � � � � ��� �
� � ��
� �

�

We regularise this ODE by introducing a short timescale


 �
�

	 �

� � � � 
 � � � � � � � � � �
�

� �� � � � � �
�

� � ��� � � � � � �� 


�

Hence the necrotic core persists if

�� � � � � � � � ��� � �� �

�

Note: agreement with experimental results by Groebe and Muller-Kleiser (1996)
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3. Thin Proliferating Rim (

� � � 	 � 	 � �

)

�

We introduce

�  � � �

and assume

� � ��� � � ��� �

�

Substituting for

� � in the algebraic identity yields

�� � �� �
�
� � � �
� � � � �

�
� � � � �
� � �

�

Substituting for

� � in the ODE yields

� �
�� � �

�
� � ��� � � � � � � � � � � � � � � �
� �

� � �� � � �� �
� � � � � � � � � �
� ���� � � � as

� � �

�

If � � � ��� � � � � � � then

�� � �
� �

��� � � �
�

�

Hence, if experiments indicate that

� � � � � � � we deduce

��� � � � � � � � �
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Summary of Results

The spatially-structured models reproduce the main features of avascular tumour growth
(i.e. quiescence, necrosis and growth saturation)

�

Rapid expansion of the necrotic core following the onset of necrosis

We can use models to predict how changes to system parameters (eg � � ) affect
tumour’s growth and equilibrium configuration

We can identify conditions under which certain equilibrium configurations will be realised

�

Thin proliferating rim if � � � � �
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Discussion

Model Extensions

�

Response to chemotherapy

�

Response to multiple growth factors (GFs)

�

Supplied externally�

Produced by tumour cells�

GFs promote or inhibit cell proliferation

Model Weaknesses

�

Cellular heterogeneity

�

2- and 3-D tumour growth/invasion
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