Resource-Efficient Linear OpticsQuantum Computation

via the Cluster State Approach

Dan Browne and Terry Rudolph

Introduction

- Photons make excellent carriers of quantum information andsingle qubit operations can be achieved with linear optical elements – (polarising) beam splitters and phase shifters.
- •• Two-qubit gates cannot be achieved deterministically by linear optics alone.
- • Need strong non-linear materials or implement non-deterministicgates via photo-detection.

Introduction

- •• Photons make excellent carriers of quantum information and single qubit operations can be achieved with linear optical elements – (polarising) beam splitters and phase shifters.
- •• Two-qubit gates cannot be achieved deterministically by linear optics alone.
- •Need strong non-linear materials or implement *non-deterministic* gates via photo-detection.
- Schemes^{a} for scalable (near)-deterministic gates are complicated and need ^a large amount of resources (entangled modes, feed-forward detection) to implement even the simplest gate.
- •Here we describe a new scheme which employs the measurement-based cluster state quantum computation approach and achieves significant gains in resource efficiency.
- a E.g. Knill-Laflamme-Milburn (KLM), Nature (2001).

Cluster States

A cluster st[a](#page-3-0)te^a is an entangled multi-qubit state which may be represented by ^a graph.

- •• Vertices represent qu[b](#page-3-1)its prepared in state^{b} $|+\rangle = |0\rangle + |1\rangle$.
- • **Edges** represent the application of the entangling quantum**CPHASE** gate

 $|0\rangle^a\langle0|1^b + |1\rangle^a\langle1|\sigma_z^b$

between the connected qubits.

- We will refer to the graph edges as **bonds**.
- •Known extra Pauli's on any cluster qubit can be accounted for.

a^B Briegel and Raussendorf, PRL, 86, 910 (2001)

 b Normalisation factors will be omitted.</sup>

Some Properties of Cluster States

- We review here ^a few properties of cluster states, which we shall use later on.
- A computational basis (σ_z) measurement on ^a cluster qubit removes the qubit from the cluster breaking all bonds.

Some Properties of Cluster States

- We review here ^a few properties of cluster states, which we shall use later on.
- A computational basis (σ_z) measurement on ^a cluster qubit removes the qubit from the cluster breaking all bonds.

- •**• Redundant encoding** is to encode a logical qubit in several qubits. The 2-qubit redundant encoding is $|0\rangle_{\text{log.}}\equiv |0\rangle|0\rangle$, $|1\rangle_{\textsf{log.}} \equiv |1\rangle|1\rangle.$
- \bullet A σ_x $\left| \frac{1}{2} \right| \left| \frac{1}{2} \right$ α measurement $\{(\ket{0} +$ $|1\rangle),(|0\rangle - |1\rangle)\}$ on a qubit in a *linear* cluster combines the neighbouring qubits into a single logical qubit (redundantly encoded).

Single logical cluster qubitencoded redundantly in two physical qubits

Cluster State Quantum Computation

On ^a cluster state with sufficient size and bond layout, an arbitraryquantum network can be simulated by *adaptive single-qubit* $measurements$ $measurements$ $measurements$ alone $^{\circ}$. The following cluster state layout $^{\mathit{b}}$ $^{\mathit{b}}$ $^{\mathit{b}}$

 a Raussendorf and Briegel, PRL 86, 5188; Raussendorf, Browne and Briegel, PRA 68, 022312

 b Nielsen, accepted PRL (2004). See also Childs, Leung and Nielsen, quant-ph/0404132.

Cluster State Quantum Computation

On ^a cluster state with sufficient size and bond layout, an arbitraryquantum network can be simulated by *adaptive single-qubit* $measurements$ $measurements$ $measurements$ alone $^{\circ}$. The following cluster state layout $^{\mathit{b}}$ $^{\mathit{b}}$ $^{\mathit{b}}$

with the above measurements, simulates the quantum network:

 a Raussendorf and Briegel, PRL 86, 5188; Raussendorf, Browne and Briegel, PRA 68, 022312 b Nielsen, accepted PRL (2004). See also Childs, Leung and Nielsen, quant-ph/0404132.

Outline of our scheme

- Qubits will be single photon polarisation $|0\rangle \equiv |H\rangle, \, |1\rangle \equiv |V\rangle.$
- • Polarisation measurement in arbitrary bases is trivial. The mainpart of our scheme is the cluster state generation.
- \bullet Instead of using CPHASE gates between qubits, we(prob[a](#page-8-0)bilistically) *fuse* clusters $^{\circ}$.

aThe same idea underlies the "valence bond model" of Verstraete and Cirac, quant-ph/0311130 b Can be generated e.g. via non-linear processes or linear optics and feed-forward.

Outline of our scheme

- Qubits will be single photon polarisation $|0\rangle \equiv |H\rangle, \, |1\rangle \equiv |V\rangle.$
- • Polarisation measurement in arbitrary bases is trivial. The mainpart of our scheme is the cluster state generation.
- • Instead of using CPHASE gates between qubits, we(prob[a](#page-9-0)bilistically) *fuse* clusters $^{\circ}$.
- Let us introduce *fusion* operator $|0\rangle\langle00| + |1\rangle\langle11|.$
- • This replaces two qubits with ^a singleone while *retaining* all cluster state bonds on each qubit.

^aThe same idea underlies the "valence bond model" of Verstraete and Cirac, quant-ph/0311130 b^b Can be generated e.g. via non-linear processes or linear optics and feed-forward.

Outline of our scheme

- Qubits will be single photon polarisation $|0\rangle \equiv |H\rangle, \, |1\rangle \equiv |V\rangle.$
- • Polarisation measurement in arbitrary bases is trivial. The mainpart of our scheme is the cluster state generation.
- • Instead of using CPHASE gates between qubits, we(prob[a](#page-10-0)bilistically) *fuse* clusters $^{\circ}$.
- Let us introduce *fusion* operator $|0\rangle\langle00| + |1\rangle\langle11|.$
- This replaces two qubits with a single one while *retaining* all cluster state bonds on each qubit.
- The initial resource will be **photon Bell** $\pmb{\text{pairs}}{}^{b}\ket{H}(\ket{H} + \ket{V}) + \ket{V}(\ket{H} - \ket{V}).$ $\pmb{\text{pairs}}{}^{b}\ket{H}(\ket{H} + \ket{V}) + \ket{V}(\ket{H} - \ket{V}).$ $\pmb{\text{pairs}}{}^{b}\ket{H}(\ket{H} + \ket{V}) + \ket{V}(\ket{H} - \ket{V}).$ These are $\pmb{\Omega}$ gubit cluster states. These are 2-qubit cluster states.

^aThe same idea underlies the "valence bond model" of Verstraete and Cirac, quant-ph/0311130 b^b Can be generated e.g. via non-linear processes or linear optics and feed-forward.

The fusion operation

• The fusion can be seen explicitly if we write out each bondCPHASE:

which, after the fusion operation $|0\rangle\langle00| + |1\rangle\langle11|$, becomes

$$
|0\rangle\prod_{i=1}^{m}\mathbbm{1}^{(i)}|\psi\rangle\prod_{i=1}^{n}\mathbbm{1}^{(i)}|\psi'\rangle+|1\rangle\prod_{i=1}^{m}\sigma_{z}^{(i)}|\psi\rangle\prod_{i=1}^{n}\sigma_{z}^{(i)}|\psi'\rangle
$$

Polarising Beam Splitter - (PBS)

The key component for realising the fusion operation is the PBS.

Building Linear Clusters - Type-I Fusion

- \bullet The fusion operationd *non*can be realiseddeterministically usingthe illustrated setup: a
- With a photon incident in each port, there are 4 possible outcomes, eachwith probability 25%.

 a Used for "parity check" in, Pittman et al, PRA (2001) and Pan et al, Nature (2003).

Building Linear Clusters - Type-I Fusion

- • The fusion operationd *non*can be realiseddeterministically usingthe illustrated setup: a
- With a photon incident in each port, there are 4 possible outcomes, eachwith probability 25%.

• **Two** outcomes give us the desired fusion operators $|0\rangle\langle00| + |1\rangle\langle11|$ or $|0\rangle\langle00| - |1\rangle\langle11|$, (one and only one photon, H or V). The second of these adds an extra σ_z but this is naturally accounted for. Thus, overall success probability is 50%.

 a Used for "parity check" in, Pittman et al, PRA (2001) and Pan et al, Nature (2003).

Building Linear Clusters - Type-I Fusion

- • The fusion operationd *non*can be realiseddeterministically usingthe illustrated setup: a
- With a photon incident in each port, there are 4 possible outcomes, eachwith probability 25%.

- **Two** outcomes give us the desired fusion operators $|0\rangle\langle00| + |1\rangle\langle11|$ or $|0\rangle\langle00| - |1\rangle\langle11|$, (one and only one photon, H or V). The second of these adds an extra σ_z but this is naturally accounted for. Thus, overall success probability is 50%.
- •If 0 or 2 photons are detected, this is a *failure*, equivalent to measuring both qubits in the (σ_z) computational basis. The qubits are thus both cut from their respective clusters.

 a Used for "parity check" in, Pittman et al, PRA (2001) and Pan et al, Nature (2003).

Linear Clusters

• On [a](#page-16-0)verage, the length of the cluster does not increase^a.

 a Actually due to the "reflective boundary" at length 2, one reaches the desired length in quadratic steps.

Linear Clusters

- • Adding Bell Pairs to^a linear cluster: 50%50%Bell Pair
- On [a](#page-17-0)verage, the length of the cluster does not increase^a. •
- The solution is to first combine Bell pairs into **3-photon clusters** (requires on average ⁴ Bell pairs).

• On average, cluster length increases by 1/2 qubit. Therefore, toadd one qubit to the cluster you need 2 \times 4 - 1 = 7 Bell Pairs.

a Actually due to the "reflective boundary" at length 2, one reaches the desired length in quadratic steps.

Linear Clusters

- • Adding Bell Pairs to^a linear cluster: 50%50%Bell Pair
- On [a](#page-18-0)verage, the length of the cluster does not increase^a. •
- The solution is to first combine Bell pairs into **3-photon clusters** (requires on average ⁴ Bell pairs).

- • On average, cluster length increases by 1/2 qubit. Therefore, toadd one qubit to the cluster you need 2 \times 4 - 1 = 7 Bell Pairs.
- • The best protocol we have found uses 5-photon clusters asbuilding blocks. This gives ^a rate: 6.5 Bell pairs per added qubit.

a Actually due to the "reflective boundary" at length 2, one reaches the desired length in quadratic steps.

Joining Clusters into the 2-D Pattern

• We now need to join these linear clusters into the desired3-dimensional layout.

• With ^a deterministic fusion, this pattern of fusions produces thecluster state layout required.

• However, our Type-I fusion is only successful half the time. Failureis equivalent to σ_z measurement, which would break up hard won existing bonds!

- •• Recall that a σ_x qubits bonds, but merges neighbouring qubits into ^a single x measurement on a cluster state does not cut the redundantly encoded qubit.
- •■ If we modify our fusion operation by introducing extra 45° rotations to each qubit, the failure outcomes will be σ_x measurer $_{x}$ measurements.
- • However, the "success" projection is then no longer diagonal inthe computational basis and does not perform the required fusion.

- •• Recall that a σ_x qubits bonds, but merges neighbouring qubits into ^a single x measurement on a cluster state does not cut the redundantly encoded qubit.
- If we modify our fusion operation by introducing extra 45° rotations to each qubit, the failure outcomes will be σ_x measurer $_{x}$ measurements.
- However, the "success" projection is then no longer diagonal inthe computational basis and does not perform the required fusion.
- We get round this by measuring *both* outputs.
- This leads to projections ontostates $|++\rangle +|--\rangle= |00\rangle + |11\rangle$ or $|++\rangle - |--\rangle = |01\rangle + |10\rangle.$

- If one of the qubits this is applied to is redundantly encoded this gives us the desired fusion! We call this ^a Type-II fusion.
- •Again, the success probability of this step is 50%.

• We now have ^a recipe to make the inter-cluster fusions.

Apply a σ_{x} measurement to prepare redundantly encoded qubit

• We now have ^a recipe to make the inter-cluster fusions.

• We now have ^a recipe to make the inter-cluster fusions.

- • Note that failures only "use up" cluster qubits to the right of thefusion.
- •• Thus, failures *cannot* propagate back through the cluster as in the Type-I fusion and other schemes.

Quantifying Resource Requirements

- • In our cluster state measurement pattern, there are the samenumber of:
	- simulated 2-qubit gates:

 \circ T-shaped units in the clusterstate:

This means the resources required to build the T-shape are ^ameasure of the resources per two-qubit gate.

Quantifying Resource Requirements

- • In our cluster state measurement pattern, there are the samenumber of:
	- ◦simulated 2-qubit gates:

◦ T-shaped units in the clusterstate:

This means the resources required to build the T-shape are ^ameasure of the resources per two-qubit gate.

- • If we use the method above, the construction of ^a T-shapeconsumes on average ⁸ bonds from the linear clusters used.
- •Thus, per general 2-qubit gate the resource requirements are:

 8×6.5 = 52 Bell Pairs.

Other Schemes: Rough Comparison of Resources

Other Schemes: Rough Comparison of Resources

Approx. entanglement resources required per (general) 2-qubit gate:

Knill-Laflamme-Milburn (KLM), Nature 401, 46 (2001)

Yoran and Reznik, PRL 91, 037903 (2003). (Measurement based "chain state" q.c., uses KLM gates)

Nielsen, accepted PRL (2004)(Cluster state scheme using KLM gates)

Our scheme, quant-ph/0405157

(for 92.5% gate success prob.) \sim 100-photon "KLM state" a

[∼]23 12-photon "KLM states"

[∼]54 8-photon "KLM states"

⁵² 2-photon Bell states

^aNote that the KLM resource states require a complicated linear optical network conditional on several / many measurements for their generation.

Summary

- We have presented a scheme for linear optics quantum computation based on the cluster state approach, that is very resource efficient compared to other schemes.
- For the shorter-term, the work provides ^a recipe for the generationof interesting new entangled states.
- The procedures at the heart of the scheme have already been *implemented* experimentally.
- • The scheme has other advantages. For example, the absence of concatenated beam-splitters, unavoidable in other schemes, makes the mode-matching requirements much less strict.

Future Directions

- Cluster state layout can be optimised for specific algorithms howmuch more gains in resource efficiency are possible?
- Can the general scheme be optimised to further reduce itsexperimental complexity?
- \bullet What about fault-tolerance?

Future Directions

- Cluster state layout can be optimised for specific algorithms howmuch more gains in resource efficiency are possible?
- Can the general scheme be optimised to further reduce itsexperimental complexity?
- •What about fault-tolerance?

This work can be found in pre-print **quant-ph/0405157**.

The authors would like to thank for helpful comments and support: Viv Kendon, Michael Nielsen, Jeremy O'Brien, Martin Plenio, Petra Scudo, Andrew White and "ceptimus"of the puzzles forum at randi.org.

This work was supported by the EPSRC, and Hewlett-Packard Ltd.