Quantum Computing with Very Noisy Gates

Produced with pdflatex and xfig

- Fault-tolerance thresholds in theory and practice.
- Available techniques for fault tolerance.
- A scheme based on the [[4, 2, 2]] code.
- Resource requirements.

E. "Manny" Knill: knill@boulder.nist.gov

Fault Tolerant Quantum Computing

Fault-Tolerance Threshold Theorem: *Given: Noisy qubits and gates. If the error rates are sufficiently low, then it is possible to efficiently process quantum information arbitrarily accurately.* Shor (1995) [1, 2], Kitaev (1996) [3], Aharonov&Ben-Or (1996) [4], Knill&Laflamme&Zurek (1996) [5], ... Gottesman&Preskill (1999), ... Steane (2002) [6], ... Knill (2004) [7], Reichardt (2004) [8]

- What is required of "noisy qubits and gates"?
- What is "sufficiently low"?
- What is "efficient"?

Error Thresholds: Proofs and Estimates

 $\hat{\mathbf{C}}$ orrelations $\rightarrow 1$. Clemens&Siddiqui&Gea-Banacloche (2004) [9]

Adversarial, quasi-independent.

Knill&Laflamme&Zurek (1996) [5], Terhal&Burkard (2004) [10], Alicki (2004) [11]

Adversarial, quasi-independent, probabilistic Pauli.

Aharonov&Ben-Or (1996) [4], Knill&Laflamme&Zurek (1996) [5]

Depolarizing errors. Gottesman&Preskill (1999)

Steane (2002) [6]

Knill (2004) [7], Reichardt (2004) [8]

Detected errors. Knill (2003) [12]

Unintended Z-measurements. Knill (2002)

The Setting

- Physical qubit engineering process.
 - Minimize noise in classical control fields.
 E.g. by proper shielding.
 - Reduce systematic errors in gates.
 - E.g. by self-correcting pulse sequences.
 - Take advantage of available noiseless subsystems.
 E.g. decoherence free subspaces.
 - Balance noisy behavior.
 - E.g. Improve measurements if **cnot**'s have low noise.
 - Take advantage of error-detection if possible.
 - E.g. by detecting emitted photons.
- To be considered here: Model-independent methods.
 - further physical engineering is relatively expensive.
 - errors are generic, with no known exploitable biases.

Error Thresholds: Theory and Practice

Structural Assumptions

Physical resources:

Arbitrarily many "physical" qubits can be called on.
 Local control capabilities:

Global control capabilities:

- Massive parallelism or no memory error.
- Negligible classical computation latency.
- Negligible quantum communication latency (for non-local two-qubit gates).

Error Models

- Independent, probabilistic Pauli errors:
 - The $|e_{\mathbf{p}}
 angle$ are orthogonal.
 - $||e_{\mathbf{p}}\rangle|^2 = \prod_i e_i(p_i)$, where e_i depends only on the gate type.
- Justification?
 - Stabilizer code implementations imply short lifetimes of unwanted coherences between Pauli errors.
 - Random Pauli pulses can further reduce these lifetimes.
 - Correlations are usually local.

Independent Depolarizing Error Models

- Each operation's errors are uniformly random Pauli errors.
 - $|o\rangle$ preparation with noise: Prepared state is $\{(1 - e_p) : |o\rangle, e_p : \sigma_x |o\rangle\}$.
 - Measurement with noise:

 $|\psi\rangle \rightarrow \{(1 - e_m) : \mathbb{1}, e_m : \sigma_x\}$ before σ_z measurement.

- No operation (memory) with noise:

 $\{(1-e_n): 1, e_n/3: \sigma_x, e_n/3: \sigma_y, e_n/3: \sigma_z\}H.$

Hadamard with noise:

 $\{(1-e_h): 1, e_h/3: \sigma_x, e_h/3: \sigma_y, e_h/3: \sigma_z\}H.$

Cnot with noise:

 $\{(1 - e_c) : 1, e_c/15 : \sigma_x^{(1)}, \dots, e_c/15 : \sigma_z^{(1)}\sigma_z^{(2)}\}$ cnot⁽¹²⁾.

• Agnostic choice for $e_{p,m,h,c}$?

$$e_c = \epsilon, \ e_h = \frac{12}{15}\epsilon, \ e_p = \frac{4}{15}\epsilon, \ e_m = \frac{4}{15}\epsilon, \ e_n \le e_h.$$

Fault-Tolerance Methods

- Use of stabilizer codes to define logical qubits.
- Shor (1995) [1], Steane (1995) [13]
 Transversal encoded Clifford-Pauli group operations.
- Teleported gates.

Gottesman&Chuang (1999) [14]

Shor (1996) [2]

Knill (2003) [12]

- Non-destructive and fault-tolerant syndrome measurements. Shor (1996) [2], Steane (1999) [15]
- Concatenation. Aharonov&Ben-Or (1996) [4, 16], Knill&Laflamme (1996) [17], ...
- Teleported error-correction.
- Fault-tolerant postselected quantum computation. Knill (2004) [18]
- Bounded-error state preparation via decoding.
 Knill (2004) [18]
- Purification of "magic" states.
 Bravyi&Kitaev (2004) [19], Knill (2004) [18]
- Error-correction with likelihood tracking.
 In progress.
 - Dynamically encoded logical qubits. Sparse codes.

Two thoughts...

The Clifford-Pauli Group

Pauli matrix notation.

$$I = 1, X = \sigma_x, Y = \sigma_y, Z = \sigma_z$$
$$[IXIYI] = \sigma_x^{(2)} \sigma_y^{(4)} = 1 \otimes \sigma_x \otimes 1 \otimes \sigma_y \otimes 1$$

 \mathcal{P}_n is the set of the ± 1 Pauli products on n qubits.

• The Clifford-Pauli group:

$$\mathcal{N}_n = \left\{ U \,|\, U\mathcal{P}_n U^{\dagger} = \mathcal{P}_n, U \text{ is unitary} \right\}$$

- Generators of \mathcal{N}_n : **cnot**, H, $e^{-iZ\pi/4}$
- **Theorem.** Any quantum computation using Z-eigenstate preparation, operators in \mathcal{N}_n , Z-measurements and feedforward can be efficiently classically simulated.

Gottesman (1997) [20]

Power of Clifford-Pauli Operations

• The CSS operations, CSS:

Preparation of $|o\rangle$ and $|+\rangle$, **cnot**, Measurement of X and Z.

- CSS operations suffice for encoding/decoding CSS codes.
- Universal quantum computation is possible with CSS, H and $|\pi/8\rangle$ -preparation.

- A fault-tolerant computation strategy:
 - 1. Implement a fault tolerant CSS computer, i.e. arbitrarily accurate logical CSS with feedforward.
 - 2. +" ϵ " + " δ ". . . + " δ ": $|\pi/8\rangle$ purification using good CSS + " ϵ " Bravyi&Kitaev (2004) [19], Knill (2004) [18]
- F.-t. CSS and $(|\pi/8\rangle$ error) \leq ($|o\rangle$, $|+\rangle$ error) \Rightarrow f.-t. QC?

Syndromes and Error Tracking

- Stabilizer code: Eigenspace of commuting Pauli products S.
- Error tracking by nondestructive syndrome measurements.
 - S-syndrome of a joint S-eigenstate $|\psi\rangle$: The S eigenvalues of $|\psi\rangle$.
- S-measurement by encoded noops.

Postselected Fault-Tolerant Quantum Computers

• State preparation + teleportation \rightarrow quantum computation.

Gottesman&Chuang (1999) [14]

- State preparation need not be deterministic.
- Postselected quantum computers.
 - Can execute any of the basic operations, but
 - an operation may fail, possibly destructively.
 - If an operation fails, this is announced.
 - ... exponentially small success probability (not 0) is possible.
- A postselected QC is fault-tolerant if success \rightarrow negligible probability of error.
- A postselected f.-t. QC only needs to detect errors.
- Does postselected f.-t. QC imply f.-t. QC?

Toward Unconditional Quantum Computation

- Problem: The states needed for f.-t. QC must be disturbed by well-bounded local errors only.
- A solution with postselected f.-t. QC:
 - 1. Implement postselected f.-t. QC with logical qubits based on a small concatenated block code.
 - 2. Use this to prepare the desired state in encoded form.
 - 3. Decode the block code through all levels.
 - 4. Accept the state if no errors are detected in decoding.

Threshold Analysis

- Combine teleported error-detection with concatenated 4-qubit codes.
- Key step: Preparation of logical Bell states.

Goal: \sim Error independence between the Bell halves.

Actually: Close to independent.
 Analysis: Heuristically "bound" with an independent model.

Logical Error Rates

Conditional error rates by computer-assisted heuristics.

The [[4,2,2]] Code

- Improve efficiency: Encode multiple qubits.
 Add error correction.
- [[4, 2, 2]] code. Stabilizer: [XXXX], [ZZZZ]. Logical ops: $X_L = [XXII], Z_L = [ZIZI]$ $X_S = [IXIX], Z_S = [IIZZ]$.
- Some properties of the [[4, 2, 2]] code.
 - For syndrome (+1, +1), the following are logical states:

$$\frac{1}{\sqrt{2}} (|0000\rangle_{1234} + |1111\rangle_{1234}), \frac{1}{\sqrt{2}} (|++++\rangle_{1234} + |---\rangle_{1234}),$$

 $\tfrac{1}{2} \big(|\mathbf{00}\rangle_{\!\!12} + |\mathbf{11}\rangle_{\!\!12} \big) \big(|\mathbf{00}\rangle_{\!\!34} + |\mathbf{11}\rangle_{\!\!34} \big), \tfrac{1}{2} \big(|\mathbf{00}\rangle_{\!\!13} + |\mathbf{11}\rangle_{\!\!13} \big) \big(|\mathbf{00}\rangle_{\!\!24} + |\mathbf{11}\rangle_{\!\!24} \big)$

- The concatenation $[[4, 2, 2]] \circledast [[4, 2, 2]]$ is a [[16, 4, 4]] code.
- The logical entanglement [[4, 2, 2]] ↔ [[4, 2, 2]] is a Bell state between a qubit and a logical qubit in the [[7,1,3]] code.

[[4,2,2]]: Cond. Logical Error with Detection

The curves are analytical.

[[4,2,2]]: Cond. Logical Error with Correction

[[4,2,2]]: Detected Error Probability

Recursive Bell State Preparation

Recursive Bell State Preparation

Recursive Bell State Preparation

Simulations of Error-Detecting Behavior

Selective Hadamard error, conditional on success.

Compounding Errors in Sequential Operations

The probability of a physical cnot error is 1%.

Success Probability in Sequential Operations

Resource Overheads per Logical Qubit

qubits prepared for a log. Bell state at various levels, with error correction.

Fault-Tolerant Simulation Benchmarks

• Benchmarking an architecture.

- Given: A Clifford-Pauli fault-tolerant scheme.
 - Error model.
- Goals: Show that the logical error model is ok.
 - Establish logical error rates.
 - Determine resource requirements.

If possible, obtain Resources(logical error rates, physical error rates).

- Benchmarking an algorithm
 - Given: A Clifford-Pauli fault-tolerant scheme.
 - Error model.
 - An algorithm.
 - Goal: Algorithm complexity and success probability.
 - ... simulations can provide probabilistic proofs.
- Issues:
 - Unexpected error-propagation in optimized schemes.
 - Logical errors are typically far from independent.
 - Pseudorandom number generators \rightarrow not a foolproof prob. proof.

Conclusion

• There is evidence that:

F.-t. QC is possible in principle at error rates well above 1%.

• But:

At what error rates is it "practical" to quantum compute with, for example, 10^{10} logical gates and 10^4 logical qubits using technology X?

On Clifford-Pauli Simulators

- Motivation: Benchmark stab.-based f.-t. architectures.
- Some existing Clifford-Pauli simulators:
 - Chung&al (2003), for "practical" architectures. (Matlab and Python)
 - Reichardt (2004) [8], exploring the concatenated 7-qubit code with error-detection methods.
 - Aaronson&Gottesman [22], well optimized, some capabilities beyond the Clifford-Pauli group, no Gaussian elimation to achieve quadratic overhead and publicly available. (C)
 - Knill (2004), general purpose, Graph-code normal form to achieve quadratic overhead, fast statistics, needs to be rebuilt. (Octave)
- Capabilities: A few thousand qubits at seconds/operation.
- Bottlenecks:
 - Getting statistics to estimate low logical error-rates.
 - Computer memory.
 - Without taking advantage of sparseness: Significant slowdown.

Contents

Title: Quantum Computing0
Fault Tolerant Quantum Computing1
Error Thresholds: Proofs and Estimates
The Setting
Error Thresholds: Theory and Practice 4
Structural Assumptions5
Error Models
Independent Depolarizing Error Models7
Fault-Tolerance Methods8
The Clifford-Pauli Group9
Power of Clifford-Pauli Operations 10
Syndromes and Error Tracking 11
Postselected Fault-Tolerant Quantum Computers12
Toward Unconditional Quantum Computation
Threshold Analysis
Logical Error Rates 15

The [[4,2,2]] Code	16
[[4,2,2]]: Cond. Logical Error with Detection	17
[[4,2,2]]: Cond. Logical Error with Correction	18
[[4,2,2]]: Detected Error Probability	19
Recursive Bell State Preparation I	20
Recursive Bell State Preparation II	21
Recursive Bell State Preparation III	22
Simulations of Error-Detecting Behavior	23
Compounding Errors in Sequential Operations	24
Success Probability in Sequential Operations	25
Resource Overheads per Logical Qubit	26
Fault-Tolerant Simulation Benchmarks	27
Conclusion	28
On Clifford-Pauli Simulators	29
References	31

References

- [1] P. W. Shor. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A, 52:2493–2496, 1995.
- [2] P. W. Shor. Fault-tolerant quantum computation. In *Proceedings of the 37th Symposium on the Foundations of Computer Science (FOCS)*, pages 56–65, Los Alamitos, California, 1996. IEEE press.
- [3] A. Yu. Kitaev. Quantum computations: algorithms and error correction. Russian Math. Surveys, 52:1191–1249, 1997.
- [4] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error. In *Proceedings of the 29th Annual ACM Symposium on the Theory of Computation* (*STOC*), pages 176–188, New York, New York, 1996. ACM Press.
- [5] E. Knill, R. Laflamme, and W. H. Zurek. Resilient quantum computation. Science, 279:342-345, 1998.
- [6] A. M. Steane. Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A, 68:042322/1-19, 2003.
- [7] E. Knill. Fault-tolerant postselected quantum computation: Threshold analysis. quant-ph/0404104, 2004.
- [8] B. W. Reichardt. Improved ancilla preparation scheme increases fault tolerant threshold. quant-ph/0406025, 2004.
- [9] J. P. Clemens, S. Siddiqui, and J. Gea-Banacloche. Quantum error-correction against correlated noise. preprint, 2004.
- [10] B. M. Terhal and G. Burkard. Fault-tolerant quantum computation for local non-markovian noise. quant-ph/04020104, 2004.
- [11] R. Alicki. Comments on "fault-tolerant computation for local non-markovian noise. quant-ph/0402139, 2004.
- [12] E. Knill. Scalable quantum computation in the presence of large detected-error rates. quant-ph/0312190, 2003.
- [13] A. Steane. Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A, 452:2551–2577, 1996.
- [14] D. Gottesman and I. L. Chuang. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 402:390-393, 1999.
- [15] A. Steane. Efficient fault-tolerant quantum computing. Nature, 399:124–126, 1999.
- [16] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error. quant-ph/9906129, 1999.
- [17] E. Knill and R. Laflamme. Concatenated quantum codes. Technical Report LAUR-96-2808, Los Alamos National Laboratory, 1996. quant-ph/9608012.
- [18] E. Knill. Fault-tolerant postselected quantum computation: Schemes. quant-ph/0402171, 2004.
- [19] S. Bravyi and A. Kitaev. Universal quantum computation based on a magic states distillation. quant-ph/0403025, 2004.
- [20] D. Gottesman. Stabilizer Codes and Quantum Error Correction. PhD thesis, Calif. Inst. Tech, Pasadena, California, 1997.
- [21] X. Zhou, D. W. Leung, and I. L. Chuang. Methodology for quantum logic gate construction. Phys. Rev. A, 62:052316/1–12, 2000.
- [22] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. quant-ph/0406196, 2004.

