Hybrid quantum error prevention, reduction, and correction methods

Quantum Information & Quantum Control Conference Toronto, July 23, 2004

Group Members

Decoherence-Reduction Methods (Partial List)

Quantum error correcting codes:

Encoding overhead; works best for errors uncorrelated in space and time (Markovian).

Decoherence-free subspaces/(noiseless) subsystems:

Encoding overhead; assumes symmetry in H_{SB} (strongly correlated errors). Symmetry \pounds conserved quantity = quantum info.

"Bang-Bang" decoupling:

Very rapid, strong pulses, no qubit overhead. Needs non-Markovian environment.

Control option are the experimentation obs

Collective dependence Collective dependence $\begin{array}{c} |0_{r}\rangle = |000\rangle, \ |1_{r}\rangle = |111\rangle \\ \text{Heisenberg exchange (quantum dots)} \\ |0gical X = \sigma_{x} \otimes \sigma_{x} \otimes \sigma_{x} \\ \text{XY/X} \langle \overline{\sigma_{g}} \otimes \alpha_{z} \rangle \\ \text{XY/X} \langle \overline{\sigma_{g}} \otimes \alpha_{z} \rangle \\ \text{SorenSent Molmer } gates^{I} \langle I \otimes \overline{\sigma_{p}} \otimes \overline{\sigma_{r}} \rangle \\ \end{array}$

Universal QC and Decoherence Elimination from the Controls up

- Identify "naturally available" interactions (e.g., Heisenberg exchange in q. dots)
- 2. Enforce decoherence model by "bang-bang" decoupling pulses generated from naturally available interactions/controls
- 3. Offer decoherence protection by encoding into decoherence-free subspace (against enforced decoherence model)
- 4. Quantum compute universally over DFS using only the naturally available interactions

5. Combine with

- Composite pulse method to deal with systematic gate errors
- FT-QECC to deal with random gate errors

Why don't you just do QECC?

- In non-Markovian regime FT-QECC and BB are subject to same strength/speed conditions; BB more economical
- Much lower encoding overhead (fewer qubits), fewer gates?

FT-QECC overhead, Steane [[7,1,3]] code: **level 1**: 7 qubits + 144 ancillas, 38 Hadamards, 288 CNOTs, 108 measurements **level 2**: 49 qubits + 320 ancillas, 154 Hadamards, 1307 CNOTs, 174 measurements

 Compatibility with naturally available controls while dealing with as general decoherence; threshold improvement – work in progress

Decoherence-Free Subspaces

Find a subspace where $H_{int} = \sum_{\alpha} S_{\alpha} \otimes B_{\alpha}$ act trivially, i.e.: make $H_{int} \propto I_{S} \otimes O_{B}$

DFS:=Subspace of full system Hilbert space in which evolution is purely unitary

Condition for DFS

(Zanardi & Rasetti, Mod. Phys. Lett. B11, 1085 (1997); Lidar *et al.*, Phys. Rev. Lett. 81, 2594 (1998), Phys. Rev. Lett. 82, 4556 (1999); Knill *et al.*, Phys. Rev. Lett. 84, 2525 (2000))

Lie algebra of S_{α} must have degenerate irreducible representations DFS = states transforming according to these irreps

Translation: look for **degenerate** states with **fixed** (pseudo-) angular momentum (total, or a component): SYMMETRY

Formal Condition for DFS, Computation

Knill, Laflamme & Viola, PRL 84, 2525 (2000)

System-bath Hamiltonian

∖≅⊕(

DFS

 $H_{SB} = \sum_{\alpha} S_{\alpha} \otimes B_{\alpha}$

Internal + external system Hamiltonian

 $H_{S} = \sum_{\beta} S'_{\beta} \otimes I_{\beta}$

A theorem from representation theory: Error generators span associative algebra $A = \text{polynomials}\{I, S_{\alpha}, S_{\alpha}^{\dagger}\}$

Matrix representation over

 $A \cong \bigoplus_{J} I_{n_{J}} \otimes M_{d_{J}}(\underbrace{)}_{multiplicity}$ dimension irreducible representations

Commutant = operators commuting with A

 $A' \cong \bigoplus_{I} M'_{n_{J}}() \otimes I_{d_{J}}$

The control operations that preserve code subspace

Hilbert space decomposition:

 d_J

Illustrate with trapped ions, quantum dots.

 $n_j > 1$ iff \exists symmetry in system-env. interaction

Trapped lons

Trapped Ions

Naturally Available Interactions: E.g., Sorensen-Molmer gates (work with hot ions)

Laser phase on ions 1,2

 $U_{12}(\dot{\theta}, \phi_1, \phi_2) = \exp[i\theta(\sigma_x \cos\phi_1 + \sigma_y \sin\phi_1) \otimes (\sigma_x \cos\phi_2 + \sigma_y \sin\phi_2)]$

Naturally compatible decoherence model is "collective dephasing"

XY Hamiltonian generating SM gates provides commutant structure

 $A' \cong \bigoplus_{J} M'_{n_{J}} \otimes I_{d_{J}}$ \Rightarrow $A \cong \bigoplus_{J} I_{n_{J}} \otimes M_{d_{J}}$ The "collective dephasing" algebra

∝ Rabi freq.

⇒ Have option to encode into collective dephasing DFS

Collective Dephasing

Often (e.g., spin boson model at low temperatures) errors on different qubits are *correlated*

Long-wavelength magnetic field B (environment) couples to spins

 ψ_2

Effect: Random "**Collective Dephasing**": $|\psi_j\rangle = a_j |0\rangle_j + b_j |1\rangle_j \mapsto a_j |0\rangle_j + e^{i\theta}_j b_j |1\rangle_j$

random *j*-independent phase (continuously distributed)

DFS encoding $|0\rangle_L = |0\rangle_1 \otimes |1\rangle_2$ $|1\rangle_L = |1\rangle_1 \otimes |0\rangle_2$

 $B(t)\hat{z}$

"A Decoherence-Free Quantum Memory Using Trapped Ions" D. Kielpinski et al., Science **291**, 1013 (2001)

Bare qubit: two hyperfine states of trapped ${}^9Be^+$ ion Chief decoherence sources: (i) fluctuating long-wavelength ambient magnetic fields; (ii) heating of ion CM motion during computation DFS encoding: $|0\rangle_{L} = |0\rangle_{1} \otimes |1\rangle_{2}$

into pair of ions $|1\rangle_{L} = |0\rangle_{1} \otimes |1\rangle_{2}$

Other sources of decoherence necessarily appear... Can we *enforce* the symmetry?

Beyond collective dephasing

Classification of *all* decoherence processes on two qubits:

$$H_{DFS} = \{\frac{ZI + IZ}{2}, \frac{XY + YX}{2}, \frac{XX - YY}{2}, ZZ, II\} \otimes B$$

storage ·

 $H_{SB} = H_{DFS} + H_{Leak} + H_{Logical}$

$$H_{Logical} = \{\overline{X} = \frac{XX + YY}{2}, \overline{Y} = \frac{YX - XY}{2}, \overline{Z} = \frac{ZI - IZ}{2}\} \otimes E$$

motional decoherence $H_{Leak} = \{XI, IX, YI, IY, XZ, ZX, YZ, ZY\} \otimes B$

computation ~

Enforce DFS conditions by "bang-bang" pulses

immune

"Bang-Bang" Decoupling

Viola & Lloyd PRA 58, 2733 (1998), inspired by NMR

 $XZX = -Z \implies$ "time reversal", H_{SB} averaged to zero. Unlike spin-echo, BB relies in essential way on non-Markovian bath; information is retrieved before it's lost to bath.

Eliminating Logical Errors Using "Bang-Bang" SM Gate

Eliminating Leakage Errors Using "Bang-Bang" SM Gate

 $U_{12}(\theta = 2\pi, \phi_1, \phi_1)$

H_{SB}

 $\sigma_z \otimes \sigma_z$

 $U_{12}(\theta = -2\pi, \phi_1, \phi_1)$

 $\sigma_z \otimes \sigma_z H_{Leak} \sigma_z \otimes \sigma_z = -H_{Leak}$

 $H_{Leak} = \{XI, IX, YI, IY, XZ, ZX, YZ, ZY\} \otimes B$

For general "leakage elimination via BB" see Wu, Byrd, D.A.L., *Phys. Rev. Lett.* **89**, 127901 (2002)

no leaka

Universal Leakage Elimination Using BB Decoupling

L.-A. Wu, M.S. Byrd, D.A.L., Phys. Rev. Lett. 89, 127901 (2002)

Qubit $\{|0\rangle, |1\rangle\}$ (physical or encoded) is part of larger Hilbert space Arrange states so $H = \{|0\rangle, |1\rangle, ..., |N\rangle\}$

> Leakage is *mixing* of qubit states with other states in H Can be unitary (Tian & Lloyd, PRA 52, 050301 (2000)) or bath-induced

Classify all system operators as

 $E \coloneqq \begin{pmatrix} 2 & N^{-2} \\ B & 0 \\ 0 & 0 \end{pmatrix} \qquad E^{\perp} \coloneqq \begin{pmatrix} 2 & N^{-2} \\ 0 & 0 \\ 0 & C \end{pmatrix} \qquad L \coloneqq \begin{pmatrix} 2 & N^{-2} \\ 0 & D \\ F & 0 \end{pmatrix}$

Logical operations Ortho. subspace

Leakage

Define "Leakage elimination operator" as $R := \begin{bmatrix} 2 & N-2 \\ -I & 0 \end{bmatrix}$

Then $\{R, L\} = 0$ i.e., *R* "time-reverses" *L* furthermore $[R, E] = [R, E^{\perp}] = 0$ so compatible with logic operations

SM Pulses are Universal on |01>,|10> Code

 $|0\rangle_{L} = |0\rangle_{1} \otimes |1\rangle_{2}$ $|1\rangle_{L} = |1\rangle_{1} \otimes |0\rangle_{2}$

 $U_{12}(\theta,\phi_1,\phi_2) = \exp[i\theta(\sigma_x\cos\phi_1 + \sigma_y\sin\phi_1) \otimes (\sigma_x\cos\phi_2 + \sigma_y\sin\phi_2)]$

 $\stackrel{DFS}{\mapsto} \exp[i\theta(\overline{X}\cos(\phi_1 - \phi_2) + \overline{Y}\sin(\phi_1 - \phi_2))]$

- Can generate a universal set of logic gates by controlling *relative* laser phase
- all single DFS-qubit operations

- controlled-phase gate between two DFS qubits

[Also: D. Kielpinski et al. Nature 417, 709 (2002), K. Brown et al., PRA 67, 012309 (2003)]

Similar conclusions apply to XY & XXZ models of solid-state physics (e.g., q. dots in cavities, electrons on He): D.A.L., L.-A. Wu, *Phys. Rev. Lett.* **88**, 017905 (2002) $H_{s} = \sum_{i} \varepsilon_{i} \sigma_{i}^{z} + \sum_{i < j} \frac{J_{ij}^{x}}{2} \left(\sigma_{i}^{x} \sigma_{j}^{x} + \sigma_{i}^{y} \sigma_{j}^{y} \right) + J_{ij}^{z} \sigma_{i}^{z} \sigma_{j}^{z}$ Control assumption for universality over $|01\rangle$, $|10\rangle$: $\varepsilon_{i} - \varepsilon_{i+1}$, $J_{i,i+1}^{x}$. SM and XY/XXZ Pulses are "Super-Universal"

 For trapped ions can eliminate all dominant errors (differential dephasing + leakage) in a 4-pulse sequence

• To eliminate ALL two-qubit errors (including \overline{X}) need a 10-pulse sequence.

 Scheme entirely compatible with SM or XY/XXZ-based gates to perform universal QC inside DFS.

For details, see: D.A.L. and L.-A. Wu, *Phys. Rev. A* 67, 032313 (2003).

Further applications: Quantum Dots

Spins in Coupled Quantum Dots for Quantum Computation

D. Loss & D. DiVincenzo, PRA 57 (1998) 120; cond-mat/9701055 (Jan. 1997)

Heisenberg Systems

Same method works, e.g., for spin-coupled quantum dots QC:

By BB pulsing of $H_{\text{Heis}} = \frac{J}{2} (\sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y + \sigma_1^z \sigma_2^z)$ collective decoherence conditions can be created:

$$H_{\rm SB} = \sum_{i=1}^{n} g_i^x \sigma_i^x \otimes B_i^x + g_i^y \sigma_i^y \otimes B_i^y + g_i^z \sigma_i^z \otimes B_i^z$$
$$\longrightarrow S_x \otimes B_x + S_y \otimes B_y + S_z \otimes B_z$$

Requires sequence of 6 π/2 pulses to create collective decoherence conditions over blocks of 4 qubits. Leakage elimination requires 7 more pulses.
Details: L.-A. Wu, D.A.L., *Phys. Rev. Lett.* 88, 207902 (2002); L.A. Wu, M.S. Byrd, D.A.L., *Phys. Rev. Lett.* 89, 127901 (2002).

Earlier DFS work showed universal QC with Heisenberg interaction alone possible [Bacon, Kempe, D.A.L., Whaley, *Phys. Rev. Lett.* **85**, 1758 (2000)]: Heisenberg interaction is "super-universal"

On to fault-tolerance... (with Kaveh Khodjasteh)

We have neglected so far: • Control inaccuracy in BB pulse implementation (systematic + random) Composite pulses (NMR) Concatenated QECC • H_{SB} , H_B on during BB pulse $H_C + H_{SB} + H_B$ $H_C + H_{SB} + H_B$

Time constraints on BB pulses

Related to transition q. Zeno à inverse q. Zeno effect; form of bath spectral density plays crucial role

 $H_{\rm SB} + H_{\rm B}$ $H_{\rm SB} + H_{\rm B}$

K. Shiokawa, D.A.L., Phys. Rev. A 69, 030302(R) (2004); P. Facchi, D.A.L., Pascazio Phys. Rev. A 69, 032314 (2004)

All of these issues are shared by QECC:

Fault Tolerant QECC: Assumptions & Requirements

Terhal & Burkard quant-ph/0402104, Alicki quant-ph/0402139: FT-QECC for *non*-Markovian baths, completely uncorrelated errors

 t_0 = time to execute elementary single or two-qubit gate $\Delta[q_i] = (\max-\min \text{ eigenvalues of } H_{\text{SB}}[q_i])/2$ $\lambda_0 = \max_{i,j} \{\Delta[q_i], \Delta[q_i, q_j]\}$ $\tau_D = \text{non-Markovian decoherence time}$ $[\tau_D = f(\text{fastest bath timescale}); \text{ Markovian: } \tau_D \sim T_2]$

Threshold condition: $\frac{t_0}{\tau_D} \sim (\lambda_0 t_0)^2 \sim 10^{-8} - 10^{-12}$

:. Need small t_0 : fast gates (time-scale set by bath spectral density/radius) Need small λ_0 : system-bath interaction gate amplitude

Not different from BB assumptions!

Dealing with control inaccuracies and "bath on" during BB $H_{C} + A + H_{SB} + H_{B}$ $H_{C} + A + H_{SB} + H_{B}$ control error $H_{SB} + H_{B}$ $H_{C} + A + H_{SB} + H_{B}$

Main Effect of BB:

• Renormalize H_{SB} : $H_{SB} = \lambda S \otimes B; \quad \lambda _ _BB \longrightarrow \lambda', \quad \lambda' < \lambda$

Concatenate BB sequences! - Renormalization \Rightarrow effective λ shrinks super-exponentially total pulse sequence time grows exp.

Concatenated BB – Numerical Results

 $H = \omega_{s} Z_{1} + \omega_{b} \sum_{i=2}^{6} Z_{i} + \sum_{i>i}^{i,j<6} j_{i,j} H_{ij}$

where $H_{ij} = X_i X_j + Y_i Y_j + Z_i Z_j$ is the Heisenberg interaction, $j_{i,j}$ is exponentially decaying coupling.

A phase transition?

Hybrid QECC: The Big Picture

Composite pulse method

DFS encoding

BB pulses (timeconcatenated)

QECC (space-concatenated); also used for Markovian part

universal QC with "naturally available interactions" Universal fault tolerant QC with

• fewer qubits, fewer gates

- symmetry not for free...

- systematic (unknown)

gate errors

- random gate errors

• lower threshold