Hybrid quantum error prevention, reduction, Hybrid quantum error prevention, reduction, and correction methods and correction methods

Quantum Information & Quantum Control Conference Toronto, July 23, 2004

Group Members

Decoherence-Reduction Methods (Partial List)

Quantum error correcting codes:

Encoding overhead; works best for errors uncorrelated in space and time (Markovian).

Decoherence-free subspaces/(noiseless) subsystems:

Encoding overhead; assumes symmetry in H_{SR} (strongly correlated errors). Symmetry E conserved quantity = quantum info.

"Bang-Bang" decoupling:

Very rapid, strong pulses, no qubit overhead. Needs non-Markovian environment.

Control option Bepteen in ameritiey are the experincenvellient implication obs

Inlective dete herence **Collettipeerrors**sing

 Soren ୱିମ୍ମିମାଏମିନ୍ସେ ିପୁ z_i ଞ୍ଜି A_i ({ି ଅ୍ୱିମ୍ବେଞ୍ଚି F ions) $|0\rangle$, \rangle = $|000\rangle$, $|1\rangle$ = $|111$ logical X Y/XX \vec{e} gନ୍ଧ୍ରମ z ⊕୫୧ୂ $\otimes \sigma_z \otimes \sigma_z$ *L L* $X\!=\! \sigma_{\scriptscriptstyle \chi}\!\otimes\!\sigma_{\scriptscriptstyle \chi}\!\otimes\!\sigma_{\scriptscriptstyle \chi}$ = ⁼ $=$ σ \otimes σ \otimes Heiseḥberg exchange (quantum dots)

Universal QC and Decoherence Elimination from the Controls up

- 1. Identify "naturally available" interactions (e.g., Heisenberg exchange in q. dots)
- 2. Enforce decoherence model by "bang-bang" decoupling pulses generated from naturally available interactions/controls
- 3. Offer decoherence protection by encoding into decoherence-free subspace (against enforced decoherence model)
- 4. Quantum compute universally over DFS using only the naturally available interactions

5. Combine with

- Composite pulse method to deal with systematic gate errors
- FT-QECC to deal with random gate errors

Why don't you just do QECC?

- In non-Markovian regime FT-QECC and BB are subject to same strength/speed conditions; BB more economical
- Much lower encoding overhead (fewer qubits), fewer gates?

FT-QECC overhead, Steane [[7,1,3]] code: **level 1**: 7 qubits ⁺ 144 ancillas, 38 Hadamards, 288 CNOTs, 108 measurements **level 2**: 49 qubits + 320 ancillas, 154 Hadamards, 1307
CNOTs, 174 measurements

Compatibility with naturally available controls while dealing with as general decoherence; threshold improvement – work in progress

Decoherence-Free Subspaces

Find a subspace where $H_{int} = \sum_{\alpha} S_{\alpha} \otimes B_{\alpha}$ act trivially, \therefore **make** $H_{\text{int}} \propto I_{\text{s}} \otimes O_B$ i.e.:

DFS:=Subspace of full system Hilbert space in which evolution is purely unitary

Condition for DFS

(Zanardi & Rasetti, Mod. Phys. Lett. B11, 1085 (1997); Lidar *et al.*, Phys. Rev. Lett. **81**, 2594 (1998), Phys. Rev. Lett. **82**, 4556 (1999); Knill *et al*., Phys. Rev. Lett. **84**, 2525 (2000))

Lie algebra of S_α must have degenerate irreducible representations DFS ⁼ states transforming according to these irreps

Translation: look for **degenerate** states with **fixed** (pseudo-) angular momentum (total, or ^a component): SYMMETRY

Formal Condition for DFS, Computation

Knill, Laflamme & Viola, PRL **84**, 2525 (2000)

System-bath Hamiltonian

 $H_{\scriptscriptstyle{SB}}^{} = \sum {\mathcal S_\alpha} \otimes B_\alpha^{}$ α $=\sum{\mathcal{S}_{\alpha}\otimes}% \left\langle \alpha\right\rangle \left\langle \alpha$

2

N

Internal ⁺ external system Hamiltonian

 $H_{\scriptscriptstyle S} = \sum {\cal S^{\prime}}_{\scriptscriptstyle \beta} \otimes I_{\scriptscriptstyle \beta}$ β = $= \sum \mathcal{S'}_{\beta} \otimes$

Error generators span associative algebra A = polynomials{*I*, $\mathcal{S}_{\alpha}^{\vphantom{\dagger}},$ $\mathcal{S}_{\alpha}^{\dagger}\}$ A theorem from representation theory:

2

N

Matrix representation over z^{α} :

 \bigoplus_{J} I_{n_J} \otimes M_{d_J} \bigoplus $A \cong \oplus I$, $\otimes M$ _a (multiplicity dimension irreducible representations

Commutant ⁼ operators commuting with *A*

 $\bm{U} \cong \bigoplus_J \bm{M'}_{n_J}(\quad) \otimes I_{d_J}$ *A* ' ≅ ⊕ *M* ' ួ () ⊗ *I*

The control operations that preserve code subspace

Hilbert space decomposition:

 η Ω d_J

J

n

DFS

J

 $\Gamma^2 \cong \oplus (\Box'') \otimes \Box$

Illustrate with trapped ions, quantum dots.

n_J > 1 iff∃ **symmetry** in system-env. interaction

Trapped Ions

Trapped Ions

Naturally Available Interactions: E.g., Sorensen-Molmer gates (work with hot ions)

Laser phase on ions 1,2

 $U_{12} (\theta, \phi_1, \phi_2) = \exp[i\theta(\sigma_x \cos\phi_1 + \sigma_y \sin\phi_1)\otimes(\sigma_x \cos\phi_2 + \sigma_y \sin\phi_2)]$

Naturally compatible decoherence model is "collective dephasing"

XY Hamiltonian generating SM gates provides commutant structure

 $\bm{U} \cong \bigoplus_J \bm{M'}_{n_J} \otimes I_{d_J}$ *A M I*

 \Rightarrow

∝ Rabi freq.

 \cong $\bigoplus_j I_{n_j} \otimes M_{d_j}$ The "collective dephasing" algebra $A \cong \oplus I$, $\otimes M$

 $M_{\rm A}$ and $M_{\rm A}$ are option to encode into collective dephasing DFS

Collective Dephasing

Often (e.g., spin boson model at low temperatures) errors on different qubits are *correlated*

Long-wavelength magnetic field *B* (environment) couples to spins

 $\mathfrak{\varPsi }_{2}$

Effect: Random "**Collective Dephasing**": $\left|\psi_{j}\right\rangle =a_{j}\left|0\right\rangle _{j}+b_{j}\left|1\right\rangle _{j}\mapsto a_{j}\left|0\right\rangle _{j}+e^{i\theta}_{\uparrow}b_{j}\left|1\right\rangle _{j}$ \mapsto

> random *j*-independent phase (continuously distributed)

1 $|\psi|$

> 1 | $\sqrt{2}$ 1 2 $\langle 0 \rangle_L = |0\rangle_1 \otimes |1\rangle_2$ $\left| \frac{1}{L} \right| = \left| \frac{1}{L} \right| \otimes \left| 0 \right|$ DFS encoding

B(*t*)*z*^ˆ

"A Decoherence-Free Quantum Memory Using Trapped Ions" D. Kielpinski et al., Science **291**, 1013 (2001)

Bare qubit: two hyperfine states of trapped ⁹Be⁺ ion

Chief decoherencesources: **(i) fluctuating long-wavelength ambient magnetic fields;** (ii) heating of ion CM motion during computation

DFS encoding: 1 2 0 0 1 *L* into pair of ions $\ket{1}_{\scriptscriptstyle{L}}\,=\!\ket{1}_{\scriptscriptstyle{1}}\otimes\!\ket{0}_{\scriptscriptstyle{2}}$ $=$ $|0\rangle$ \otimes

Other sources of decoherence necessarily appear… Can we *enforce* the symmetry?

Beyond collective dephasing

Classification of *all* decoherence processes on two qubits:

 $H_{DFS} = \{$

σ*z*

 H_{SB} = H_{DFS} + H_{Leak} + $H_{Logical}$

$$
H_{Logical} = \left\{ \overline{X} = \frac{XX + YY}{2}, \overline{Y} = \frac{YX - XY}{2}, \overline{Z} = \frac{ZI - IZ}{2} \right\} \otimes B
$$

 ${H}_{DFS} = \{\frac{ZI + IZ}{2}, \frac{XY + YX}{2}, \frac{XX - YY}{2}, ZZ, II\} \otimes B$

 ${H}_{Leak} = \{XI, IX, \not\,\!\!\!\!YI, IY\! \not\!\!\!\!XZ, ZX, YZ, ZY\} \otimes B$ motional decoherence

computation

Enforce DFS conditions by "bang-bang" pulses

differential

2 2

immune

0) $=$ 0) \otimes 1

=⊗

L

L

== 1 ≥ ⊗

1) = 1) \otimes 10

0

1

1 | 12

lephasing

"Bang-Bang" Decoupling

Viola & Lloyd PRA **58**, 2733 (1998), inspired by NMR

 $H_{_{\rm SB}}$ averaged to zero. "time reversal", $XZX = -Z$ \implies

Unlike spin-echo, BB relies in essential way on non-Markovian bath; information is retrieved before it's lost to bath.

Eliminating Logical Errors Using "Bang-Bang" SM Gate

Eliminating Leakage Errors Using "Bang-Bang" SM **Gate**

 $U_{12}(\theta = -2\pi, \phi_1, \phi_1)$ *H*_{SB} $U_{12}(\theta = 2\pi, \phi_1, \phi_1)$

σ*z*⊗σ*^z*

SB

0

1

0) $=$ 101

L

L

=

1) $=$ 10

=

 $\sigma_z \otimes \sigma_z H_{\text{Leak}} \sigma_z \otimes \sigma_z = -H_{\text{Leak}}$

⁼{ , , , , , , , }[⊗] *Leak ^H XI IX YI IY XZ ZX YZ ZY ^B*

For general "leakage elimination via BB" see Wu, Byrd, D.A.L., *Phys. Rev. Lett.* **89**, 127901 (2002)

Leak

no leakage

errors

 $=$ *H*_{χ}^{χ}_{χ}^{χ}

t

Universal Leakage Elimination Using BB **Decoupling**

L.-A. Wu, M.S. Byrd, D.A.L., *Phys. Rev. Lett.* **89**, 127901 (2002)

Qubit {|0},|1}} (physical or encoded) is part of larger Hilbert space Arrange states so $H = \{ |0\rangle, |1\rangle, ..., |N\rangle \}$

> $\bf Can$ be unitary $(Tian\ & Lloyd, PRA$ 52, 050301 (2000)) ${\bf or}$ $bath-induced$ Leakage is *mixing* of qubit states with other states in H

Classify all system operators as

 $\overline{}$ $\stackrel{2}{\sim}$ $\stackrel{N-2}{\sim}$ $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$ $2 \sqrt{N-2}$ $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$ $E = |B \setminus 0|$ $E^{\perp} = |0 \setminus 0|$ $L = |0$ 0 0 0 0 0 C) and F 0 $N-2$ $N-2$ $N-2$ $N-1$ N $E := |B \setminus 0|$ $E^+ := |0 \setminus 0|$ $L := |0 \setminus D$ *C F* − [−] [−] $= \begin{array}{ccc} B & 0 & E^\perp := & 0 & 0 \end{array}$ $L =$ $\begin{pmatrix} \frac{2}{B} & \frac{N-2}{O} \\ 0 & 0 \end{pmatrix}$ $E^{\perp} := \begin{pmatrix} \frac{2}{O} & \frac{N-2}{O} \\ 0 & 0 \end{pmatrix}$ $L := \begin{pmatrix} \frac{2}{O} & \frac{N-2}{O} \\ 0 & D \\ F & 0 \end{pmatrix}$

Logical operations Ortho. subspace Leakage

 $\frac{2}{2}$ $\frac{N-2}{2}$ 2

> $\overline{}$ $\stackrel{2}{\sim}$ $\stackrel{N-}{\sim}$

> > $\rm 0$

2

−

N

I

Leakage elimination operator" as $R := |-I \; 0$ Define " $R := \vert -I \vert$ = [−] $\begin{pmatrix} 2 & N-2 \ -I & 0 \ 0 & I \end{pmatrix}$

Then $\{R,L\} = 0$ i.e., R "time-reverses" furthermore $[R, E] = [R, E^{\perp}] = 0$ so compatible with logic operations " R,L = 0 i.e., R "time-reverses" L

SM Pulses are Universal on |01>,|10> Code

1 2 $1 \quad 1 \quad 12$ $\ket{0}_L = \ket{0}_1 \otimes \ket{1}$ $1 \equiv |1 \rangle \otimes |0 \rangle$ *L*

 $U_{12} (\theta, \phi_1, \phi_2) = \exp[i\theta(\sigma_x \cos\phi_1 + \sigma_y \sin\phi_1)\otimes(\sigma_x \cos\phi_2 + \sigma_y \sin\phi_2)]$

 \overline{DFS} exp[$i\theta(\overline{X}\cos(\phi_1 - \phi_2) + \overline{Y}\sin(\phi_1 - \phi_2))$] \mapsto expl*ub*(X cos($\varphi - \varphi$)+Y sin(φ –

- Can generate ^a universal set of logic gates by controlling *relative* laser phase
- all single DFS-qubit operations

 $\ddot{}$

controlled-phase gate between two DFS qubits

[Also: D. Kielpinski *et al*. Nature **417**, 709 (2002), K. Brown *et al*., PRA **67**, 012309 (2003)]

Similar conclusions apply to XY $\&$ XXZ models of solid-state physics (e.g., q. dots in cavities, electrons on He): D.A.L., L.-A. Wu, *Phys. Rev. Lett*. **88**, 017905 (2002)Control assumption for universality over $|01\rangle,|10\rangle;$ \mathcal{E}_{i} – $\mathcal{E}_{i+1},J^{x}_{i,i+1}.$ $=\sum_i \mathcal{E}_i \sigma_i^2 + \sum_{i < j} \frac{-\omega_i}{2}$ $\int u^y \left(\sigma^x \sigma^y + \sigma^y \sigma^y \right) + I^z \sigma^z \sigma^z$ *S i j i j ij i j z* i \ddot{i} \ddot{i} *x* H_{S} = \sum_{i} \mathcal{E}_{i} σ_{i}^{z} + \sum_{i} $\frac{J_{ij}^{x}}{2}$ $\left(\sigma_{i}^{x} \sigma_{i}^{x} + \sigma_{i}^{y} \sigma_{i}^{y} \right)$ + $J_{ii}^{z} \sigma_{i}^{z} \sigma_{i}^{z}$ $\sum_i \mathcal{E}_i \sigma_i^z + \sum_{i < j} \frac{\sigma_{ij}^x}{2} \Big(\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y \Big) +$

SM and XY/XXZ Pulses are "Super-Universal"

For trapped ions can eliminate all dominant errors (differential dephasing ⁺ leakage) in ^a 4-pulse sequence

To eliminate ALL two-qubit errors (including $\overline{\chi}$) need a 10-pulse sequence.

Scheme entirely compatible with SM or XY/XXZ-based gates to perform universal QC inside DFS.

For details, see: D.A.L. and L.-A. Wu, *Phys. Rev. A* **67**, 032313 (2003).

Further applications: Quantum Dots

Spins in Coupled Quantum Dots for Quantum Computation

D. Loss & D. DiVincenzo, PRA 57 (1998) 120; cond-mat/9701055 (Jan. 1997)

back gates magnetized or heterostructure high-g layer quantum well $H = \sum_{\langle ij \rangle} J_{ij}(t) \mathbf{S}_i \cdot \mathbf{S}_j + \sum_i (g_i \mu_B \mathbf{B}_i)(t) \cdot \mathbf{S}_i$ n.n. exchange local Zeeman

Heisenberg Systems

Same method works, e.g., for *spin-coupled quantum dots* QC:

By BB pulsing of $H_{\text{Heis}} = \frac{J}{2} (\sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y + \sigma_1^z \sigma_2^z)$ collective decoherence conditions can be created: $H_{\text{Heis}} = \frac{J}{2} (\sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y + \sigma_1^z \sigma_2^z)$

$$
H_{SB} = \sum_{i=1}^{n} g_i^x \sigma_i^x \otimes B_i^x + g_i^y \sigma_i^y \otimes B_i^y + g_i^z \sigma_i^z \otimes B_i^z
$$

\n
$$
\longrightarrow S_x \otimes B_x + S_y \otimes B_y + S_z \otimes B_z
$$

Details: L.-A. Wu, D.A.L., *Phys. Rev. Lett.* **88**, 207902 (2002); L.A. Wu, M.S. Byrd, D.A.L., *Phys. Rev. Lett. 89, 127901 (2002).* Requires sequence of 6 $\pi/2$ pulses to create collective decoherence conditions over blocks of 4 qubits. Leakage elimination requires 7 more pulses.

Earlier DFS work showed universal QC with Heisenberg interaction alone possible [Bacon, Kempe, D.A.L., Whaley*, Phys. Rev. Lett*. **⁸⁵**, ¹⁷⁵⁸ (2000)]: Heisenberg interaction is "super-universal"

On to fault-tolerance…(with Kaveh Khodjasteh)

We have neglected so far: **Control inaccuracy in BB pulse implementation** (systematic ⁺ random) Composite pulses (NMR) Concatenated QECC

 H_{SB} , H_{B} on during BB pulse

 H_{C} + H_{SB} + H_{B} + H_{C} + H_{SB} + H_{B} $H_{\text{SB}} + H_{\text{B}}$ $_H + H_B$ $H_{SB} + H_B$

Time constraints on BB pulses

Related to transition q. Zeno \dot{a} inverse q. Zeno effect; form of bath spectral density plays crucial role

K. Shiokawa, D.A.L., *Phys. Rev. A* **69**, 030302(R) (2004); P. Facchi, D.A.L., Pascazio *Phys. Rev. A* **69**, 032314 (2004)

All of these issues are shared by QECC:

Fault Tolerant QECC: Assumptions & Requirements

Terhal & Burkard quant-ph/0402104, Alicki quant-ph/0402139: FT-QECC for *non*-Markovian baths, completely uncorrelated errors

 $t₀$ = time to execute elementary single or two-qubit gate $\Delta[q_i] = (\text{max-min eigenvalues of } H_{\text{\tiny SB}}[q_i])/2$ $0 \quad \text{max}_{i}$ $\max_{i,j}\{\Delta[q_i],\Delta[q_i,q_j]\}$ $\lambda_0 = \max_{i} \lambda_i \Delta[q_i], \Delta[q_i, q_i]$ $[\tau_D = f$ (fastest bath timescale); Markovian: $\tau_D \sim T_2$] τ_D =non-Markovian decoherence time

 $\rm 0$ $0 \approx (2 + 2 \times 10^{-8} - 10^{-12})$ $\frac{1}{\tau_{\text{D}}} \sim (\lambda_0 t_0)^2 \sim 10^{-8} - 10^{-4}$ Threshold condition: *Dt*

 $\rm 0$ $\rm 0$ ∴ Need small t_o: fast gates (time-scale set by bath spectral density/radius) Need small λ_0 : system-bath interaction gate amplitude

Not different from BB assumptions!

Dealing with control inaccuracies and "bath on" during BB $H_{\rm C}$ + \bigtriangleup + $H_{\rm SB}$ + $H_{\rm B}$ + $H_{\rm C}$ + Δ + $H_{\rm SB}$ + $H_{\rm BB}$ $H_{\text{SB}} + H_{\text{B}}$ | $H_{\text{SB}} + H_{\text{B}}$ randomcontrol error

Main Effect of BB:

• Renormalize H_{SB} : $H_{SB} = \lambda S \otimes B$; $\lambda \rightarrow BB \rightarrow \lambda'$, $\lambda' < \lambda$

Concatenate BB sequences! - Renormalization \Rightarrow effective λ shrinks super-exponentially total pulse sequence time grows exp.

Concatenated BB – Numerical Results

6 *i*, *j* <6 $1 + \omega_b \sum_{i=2}^{\infty} \frac{2i}{i} + \sum_j J_i,$ *i j* s μ j μ k j μ k j k j k j k j k j *i* =2 *i>j* $H = \omega_{s} Z_{1} + \omega_{b} \sum Z_{i} + \sum J_{i} + H$ $\,<$ $=$ 2 \qquad \qquad $=\omega_{\scriptscriptstyle s} Z^{}_{\scriptscriptstyle 1} + \omega^{}_{\scriptscriptstyle b} \sum Z^{}_{\scriptscriptstyle i} + \sum^{}_{\scriptscriptstyle \sim}$

where $H_{ij}=X_iX_j+Y_iY_j+Z_iZ_j$ is the Heisenberg interaction, $j_{i,j}^-$ is exponentially decaying coupling.

A phase transition?

Hybrid QECC: The Big Picture

Composite pulse method \bigvee - systematic (unknown)

DFSencoding

BB pulses (timeconcatenated)

QECC (space-concatenated); also used for Markovian par^t

universal QC with "naturally available interactions"

Universal fault tolerant QC with

- fewer qubits, fewer gates
- lower threshold

gate errors - random gate errors

symmetry not for free…