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1. Introduction

Can there exist infinite-range entanglement in thermal states at
finite temperature?
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The 3D cluster state provides intrinsic error correction.
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2. Model

l

l

d (odd)

ρin(T ) = 1
Z(T ) e

−H/T ,

3D thermal cluster state at temperature T .



2. Model

entangled state

A B
LOCC

|ψout〉AB
∼= |0〉A|0〉B + |1〉A|1〉B

Output: encoded Bell state among A and B.



2. Model

entangled state

A B
LOCC

Interested in the localizable entanglement.

Entanglement length Le = d.



2. Model: 3D thermal cluster state

We consider the Hamiltonian

H = −
∆

2

∑
a∈C

Ka, (1)

where Ka = Xa
⊗

b∈nbgh(a)

Zb.

The thermal cluster state ρC(T ) = 1
Z e

−βH, β ≡ 1/T , then is

ρC(T ) =
1

2|C|
∏
a∈C

(
I + tanh

(
β∆

2

)
Ka

)
. (2)

• ρC(T = 0) is a cluster state |φ〉C〈φ|.



3. Result

For the 3D thermal cluster state ρ(T ) a transition between infi-

nite and finite entanglement length occurs between

0.30∆ ≤ Tc ≤ 1.13∆. (3)

∆: the energy gap of H.



4. Upper bound to Tc

W

valence bond statecluster state

vertex domain u u.*

W † =
⊗
u∈C

|0〉u〈0|u.∗||+ |1〉u〈1|u.∗||. (4)



4. Upper bound to Tc

W

valence bond statecluster state

A BBA

Applying the PPT separability criterion to the Bell pairs in the

VBS state across the cut yields Tc ≤ 1.13∆.



5. Lower bound to Tc

3D cluster state,
measurement pattern

FT quantum memory with
the toric (or planar) code [1,2,3]

Random plaquette Z2-gauge model in 3D [3]

[1] A. Kitaev, quant-ph/9707021 (1997).

[2] S. Bravyi, A. Kitaev, quant-ph/9810092 (1998).

[3] E. Dennis, A. Kitaev, A. Landahl and J. Preskill, quant-ph/0110143 (2001).



5.1 Error model

The thermal cluster state

ρC(T ) =
1

2|C|
∏
a∈C

(
I + tanh

(
β∆

2

)
Ka

)

is equivalent to local phase errors Za applied to the perfect cluster

state, with probability

p =
1

1 + exp(β∆)
. (5)



5.2 The measurement pattern

−1l

u 3
u 1

u 2

d1 1
l0

: Not measured. u3 = 1, d, u1 + u2 = odd,
: σz-measurement. u = (e[ven], e, e), (o[dd], o, o),
: σx-measurement. otherwise.

(6)

If the qubits L (left) are entangled with R (right) after the

local measurements, they must have been entangled before.



5.3 Mapping to the Z2 gauge model

What needs to be shown:

1. Without errors: post meas. |ψ〉LR is an encoded Bell state
2. Considering errors:

• Lattices for Z2 gauge model: To and Te (simple cubic, double spacing).
Te [To] mediates ZZ- [XX]- correlations.

• Elementary errors on edges and syndrome bits on vertices of Te, To.
• Harmful errors: homologically nontrivial error cycles.



5.4 Lower bound to Tc

• For the described measurement pattern the measurement

outcomes are dependent −→ error detection and correction.

• A random plaquette Z2-gauge model in 3D [1] describes the

performance of error correction.

– high-temp disordered phase: error correction fails

– low-temp ordered phase: error correction successful

Critical error probability [2], temperature:

pc = 0.033 ⇐⇒ Tc = 0.3∆.

[1] E. Dennis, A. Kitaev, A. Landahl and J. Preskill, quant-ph/0110143 (2001).

[2] T. Ohno, G. Arakawa, I. Ichinose and T. Matsui, quant-ph/0401101 ( 2004).



5.5 Alternative explanation for the MP

: Not measured. u3 = 1, d, u1 + u2 = odd,
: σz-measurement. u = (e[ven], e, e), (o[dd], o, o),
: σx-measurement. otherwise.

−1l

u 3
u 1

u 2

d1 1
l0

May artificially split the measurement pattern into two steps:

1. Measure the qubits with u1 + u2 = even, ∀u3.

=⇒ 1D cluster state encoded with the planar code.

2. Measure the remaining qubits, except L and R (all X).
∼= fault-tolerant encoded X measurements at 2 ≤ u3 ≤ d−1

=⇒ encoded Bell state between L and R.



6. More general errors

• X,Y -errors can also be corrected.

Local depolarizing channel with error prob. px = py = pz = p′
3 :

• Error threshold p′c = 1.4%.

• Note: measurement pattern contains σz-measurements. If

corresponding cluster qubits left out from the beginning, then

p′′c = 3/2 pc = 4.9%.



7. Finite size effects

Numerically: For the Bell state fidelity F we find

F ∼ exp (−d k1(p) exp(−k2(p) l)) . (7)
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Consequence: for constant F , code block length l ∼ log(d).



8. An application

d even gates
cPhase
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3D cluster state

LOCC

Fault-tolerant encoded long-distance cPhase gate,

mediated via short-range interaction and LOCC.



9. Sumary

• The thermal cluster state exhibits a transition from infinite

to finite entanglement length at a nonzero temperature Tc,

0.3∆ ≤ Tc ≤ 1.13∆.

(∆: energy gap of the Hamiltonian)

• The reason for this behavior is an intrinsic error correction

capability of 3D cluster states.

• Have established a connection

cluster states ⇐⇒ surface codes.


