Long-range quantum entanglement in noisy cluster states

R. Raussendorf, S. Bravyi and J. Harrington

California Institute of Technology, Pasadena, CA, USA

Toronto, July 2004

1. Introduction

Can there exist infinite-range entanglement in thermal states at finite temperature?

1. Introduction

Can there exist infinite-range entanglement in thermal states at finite temperature?

1. Introduction

Can there exist infinite-range entanglement in thermal states at finite temperature?

The 3D cluster state provides intrinsic error correction.

2. Model

$$\rho_{in}(T) = \frac{1}{Z(T)} e^{-H/T},$$
3D thermal cluster state at temperature T .

2. Model

2. Model

2. Model: 3D thermal cluster state

We consider the Hamiltonian

$$H = -\frac{\Delta}{2} \sum_{a \in \mathcal{C}} K_a, \tag{1}$$

where $K_a = X_a \bigotimes_{b \in \mathsf{nbgh}(a)} Z_b$.

The thermal cluster state $\rho_{\mathcal{C}}(T) = \frac{1}{Z}e^{-\beta H}$, $\beta \equiv 1/T$, then is

$$\rho_{\mathcal{C}}(T) = \frac{1}{2^{|\mathcal{C}|}} \prod_{a \in \mathcal{C}} \left(I + \tanh\left(\frac{\beta\Delta}{2}\right) K_a \right).$$
 (2)

•
$$\rho_{\mathcal{C}}(T=0)$$
 is a cluster state $|\phi\rangle_{\mathcal{C}}\langle\phi|$.

3. Result

For the 3D thermal cluster state $\rho(T)$ a transition between infinite and finite entanglement length occurs between

$$0.30\,\Delta \le T_c \le 1.13\,\Delta.\tag{3}$$

 Δ : the energy gap of H.

4. Upper bound to T_c

$$W^{\dagger} = \bigotimes_{u \in \mathcal{C}} |0\rangle_u \langle 0^{|u.*|}| + |1\rangle_u \langle 1^{|u.*|}|.$$
(4)

4. Upper bound to T_c

Applying the PPT separability criterion to the Bell pairs in the VBS state across the cut yields $T_c \leq 1.13 \Delta$.

5. Lower bound to T_c

- [1] A. Kitaev, quant-ph/9707021 (1997).
- [2] S. Bravyi, A. Kitaev, quant-ph/9810092 (1998).
- [3] E. Dennis, A. Kitaev, A. Landahl and J. Preskill, quant-ph/0110143 (2001).

5.1 Error model

The thermal cluster state

$$\rho_{\mathcal{C}}(T) = \frac{1}{2^{|\mathcal{C}|}} \prod_{a \in \mathcal{C}} \left(I + \tanh\left(\frac{\beta \Delta}{2}\right) K_a \right)$$

is equivalent to local phase errors Z_a applied to the perfect cluster state, with probability

$$p = \frac{1}{1 + \exp(\beta \Delta)}.$$
 (5)

5.2 The measurement pattern

If the qubits \bigcirc_L (left) are entangled with \bigcirc_R (right) after the local measurements, they must have been entangled before.

5.3 Mapping to the Z_2 gauge model

What needs to be shown:

- 1. Without errors: post meas. $|\psi\rangle_{LR}$ is an encoded Bell state
- 2. Considering errors:
 - Lattices for \mathbb{Z}_2 gauge model: T_o and T_e (simple cubic, double spacing). T_e $[T_o]$ mediates \overline{ZZ} $[\overline{XX}]$ correlations.
 - Elementary errors on edges and syndrome bits on vertices of T_e , T_o .
 - Harmful errors: homologically nontrivial error cycles.

5.4 Lower bound to T_c

- For the described measurement pattern the measurement outcomes are *dependent* \rightarrow error detection and correction.
- A random plaquette Z_2 -gauge model in 3D [1] describes the performance of error correction.
 - high-temp disordered phase: error correction fails
 - low-temp ordered phase: error correction successful

Critical error probability [2], temperature:

$$p_c = 0.033 \iff T_c = 0.3 \Delta.$$

[1] E. Dennis, A. Kitaev, A. Landahl and J. Preskill, quant-ph/0110143 (2001).
[2] T. Ohno, G. Arakawa, I. Ichinose and T. Matsui, quant-ph/0401101 (2004).

5.5 Alternative explanation for the MP

May artificially split the measurement pattern into two steps:

1. Measure the qubits with $u_1 + u_2 = even$, $\forall u_3$.

 \implies 1D cluster state encoded with the planar code.

2. Measure the remaining qubits, except \bigcirc_L and \bigcirc_R (all X). \cong fault-tolerant encoded \overline{X} measurements at $2 \le u_3 \le d-1$ \implies encoded Bell state between \bigcirc_L and \bigcirc_R .

6. More general errors

• X,Y-errors can also be corrected.

Local depolarizing channel with error prob. $p_x = p_y = p_z = \frac{p'}{3}$:

- Error threshold $p'_c = 1.4\%$.
- Note: measurement pattern contains σ_z -measurements. If corresponding cluster qubits left out from the beginning, then $p_c'' = 3/2 p_c = 4.9\%$.

7. Finite size effects

Numerically: For the Bell state fidelity F we find

$$F \sim \exp\left(-dk_1(p)\exp(-k_2(p)l)\right). \tag{7}$$

Consequence: for constant F, code block length $l \sim \log(d)$.

8. An application

Fault-tolerant encoded long-distance cPhase gate, mediated via short-range interaction and LOCC.

9. Sumary

• The thermal cluster state exhibits a transition from infinite to finite entanglement length at a nonzero temperature T_c ,

 $0.3 \Delta \leq T_c \leq 1.13 \Delta$.

(Δ : energy gap of the Hamiltonian)

- The reason for this behavior is an intrinsic error correction capability of 3D cluster states.
- Have established a connection

cluster states \iff surface codes.