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     Good Additive Cyclic Quantum Codes 
      Ai Luo and M. Reza. Soleymanni 
         
Abstract - The paper presents all the best additive cyclic quantum codes of length up to 23 
qubits, as well as a table showing the existed additive cyclic quantum codes of length up to 
31 qubits.   
 
 

1. Introduction 
Calderbank’s paper [1] turned the problem of finding additive quantum codes to the 

problem of finding self-orthogonal cods over ( )4
n

GF .  In [1], many methods were 

presented.  In this paper, we use one of those methods in [1] to do a thorough research.   
 

 
2. Some theorems  

Calderbank’s paper [1] presented the following theorem about the additive cyclic codes 

over ( )4
n

GF : 

Theorem 1: 

a) Any ( ), 2kn  additive cyclic code C  has two generators which can be represented as 

( ) ( ) ( ),wp x q x r x+ , where ( ) ( ) ( ), ,p x q x r x  are binary polynomials, ( )p x  and 

( )r x  divide 1nx −  (mod 2), ( )r x  divides 
( )( )

( )
1nq x x

p x
−

 (mod 2), and 

2 deg degk n p r= − − . 

b) If ( ) ( ) ( ),wp x q x r x′ ′ ′+  is another such representation, then 

( ) ( ) ( ) ( ),p x p x r x r x′ ′= =  and ( ) ( )q x q x′ ≡  (mod ( )r x ). 

c) C  is self-orthogonal if and only if 

( ) ( ) ( ) ( )1 1 0n np x r x p x r x− −≡ ≡    (mod 1nx − )    

( ) ( ) ( ) ( )1 1n np x q x p x q x− −≡    (mod 1nx − )    

This theorem enables us to search all of the self-orthogonal additive cyclic codes over 
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( )4
n

GF .  In order to find the corresponding [ ], ,n n k d� �−� � additive cyclic quantum 

codes, we need the following theorem, which is also mentioned in [1]: 
 

Theorem 2: If C  is an ( ). 2kn  additive code with weight enumerator ( ),CW x y  [2], 

then the weight enumerator of C⊥  is given by: 

     ( ) ( ), 2 3 ,k
C

W x y W x y x y⊥
−= + −     

We can find the minimum distance of C C⊥ −  by comparing the coefficients of 

( ),CW x y  with those of ( ),
C

W x y⊥ . 

 

The search ranges for the polynomials ( ) ( ) ( ), ,p x q x r x  are the following: 

1) The arrange for ( )p x  is between 1 and 1nx − , not including 1nx − .  ( )p x  can not 

be 0, for if ( )p x  is 0, the code C  will be a binary code.  

2) The arrange for ( )r x  is between 1 and 1nx − , including 1nx − .  When ( )r x  is 

1nx − , ( )r x  can not be considered as a generator, for ( )r x  is actually 0 (mod 1nx − ).  

In this case, the generator of the code is simply ( ) ( )wp x q x+ .  

3) The arrange for ( )q x  is between 1 and ( )r x , including ( )r x .  Note that 

( ) ( )q x r x=  is equivalent to ( ) 0q x = , for the generators ( ) ( ) ( ),wp x r x r x+  and 

( ) ( ),wp x r x  generate same code. 

 
3. The search algorithm 

1) Find all of the irreducible binary factors of 1nx −  over ( )2GF .  These factors will 

help us in the next step – finding ( )p x  and ( )r x .  

2) Consider all of the pairs of ( )p x  and ( )r x  which satisfy the equation 
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 ( ) ( ) ( ) ( )1 1 0n np x r x p x r x− −≡ ≡    (mod 1nx − )  

3) For each pair of ( )p x  and ( )r x  coming from step 2), consider all of the possible 

( )q x which satisfy  

a) ( )( ) ( ) ( )( )1 0 modnq x x p x r x− ≡  

b) ( ) ( ) ( ) ( )1 1n np x q x p x q x− −≡    (mod 1nx − ) 

4) For each set of qualified polynomials ( ) ( ) ( ), ,p x q x r x , we calculate the weight 

enumerators of the code and its dual code to find d . 
 

 
4. The results 

         Table 1.1 
 Additive cyclic quantum codes with highest minimum distance 

Parameters Generators 

[ ]5,0,3� �� � 

[ ]5,1,3� �� � 

[ ]5,4,1� �� � 

  0 1 0 1 1 1 1 1w w  

  1 0 1w w  

    w w w w w  

[ ]7,0,3� �� � 

[ ]7,1,3� �� � 

[ ]7,3, 2� �� � 

[ ]7, 4, 2� �� � 

[ ]7,6,1� �� � 

0 0 0 1011 0 0 0w w w w  

10 0 01w w  

0 011w w w  

 1    0 1w w w w  

      w w w w w w w  

[ ]9,0,4� �� � 

[ ]9,1,3� �� � 

[ ]9, 2,3� �� � 

   1 0 1 0 0 0 1 1 0 1 1 0 1 1 0w w w  

  1 0 0 0 0 0 1w w  

   1 0 1 1 0 1w w w  
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[ ]9,3,3� �� � 

[ ]9,6,2� �� � 

[ ]9,7,1� �� � 

[ ]9,8,1� �� � 

 0 0  1 1 0 1 1w w  

 1 1  1 1  1 1w w w  

  0   0   0w w w w w w  

        w w w w w w w w w  

[ ]11,0,4� �� � 

[ ]11,1,3� �� � 

[ ]11,10,1� �� � 

  0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1w w  

  1 0 0 0 0 0 0 0 1w w  

          w w w w w w w w w w w  

[ ]13,0,5� �� � 

[ ]13,1,5� �� � 

[ ]13,12,1� �� � 

  0 0 1 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1w w  

  1 0 0 1 1 0 1 1 0 0 1w w  

            w w w w w w w w w w w w w  

[ ]15,0,6� �� � 

[ ]15,1,5� �� � 

[ ]15, 2,5� �� � 

[ ]15,3,5� �� � 

[ ]15, 4, 4� �� � 

[ ]15,5,4� �� � 

[ ]15,6,4� �� � 

[ ]15,7,3� �� � 

[ ]15,8,3� �� � 

[ ]15,9,3� �� � 

 1    1  0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0w w w w w  

  1 0 0 1 1 0 0 0 1 1 0 0 1w w  

   1 1 0 1 1 0 0 1 1 0 1 1w w w  

 0 0  0 1 1 0 1 0 1 0 1 1 0w w  

  1 0  1 0 0 1 1 1 0 1 1 1w w w  

 0  1   0 0 1 1 1 1 0 0 1w w w w  

 0 0     1 0 1 0 1 0 0 1w w w w w  

  0  0 0 1  0 1 0 1 1 1 1w w w w  

 1 1 1  0    0 0 1 1 0 1w w w w w  

  0 0    1 1  1 0 1 1 1w w w w w w  



   

 5 

[ ]15,10,2� �� � 

[ ]15,11, 2� �� � 

[ ]15,12,2� �� � 

[ ]15,13,1� �� � 

[ ]15,14,1� �� � 

 1 1 1 1  1 1 1 1  1 1 1 1w w w  

  1 0 1   1 0 1   1 0 1w w w w w w  

 1 1  1 1  1 1  1 1  1 1w w w w w  

  0   0   0   0   0w w w w w w w w w w  

              w w w w w w w w w w w w w w w  

[ ]17,0,7� �� � 

[ ]17,1,7� �� � 

[ ]17,8, 4� �� � 

[ ]17,9, 4� �� � 

[ ]17,16,1� �� � 

  0 0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1w w  

  1 0 1 1 1 0 1 0 1 0 1 1 1 0 1w w  

 1 0    0 1  1 1 1 0 0 1 1 1w w w w w  

  1  1 1  1   0 0 1 0 1 0 0w w w w w w  

                w w w w w w w w w w w w w w w w w  

[ ]19,0,7� �� � 

[ ]19,1,7� �� � 

[ ]19,18,1� �� � 

  0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1w w  

  1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1w w  

                  w w w w w w w w w w w w w w w w w w w  

[ ]21,0,8� �� � 

[ ]21,1,7� �� � 

[ ]21,2,6� �� � 

[ ]21,3,6� �� � 

[ ]21,4,6� �� � 

[ ]21,5,6� �� � 

[ ]21,6,5� �� � 

  0 1 0  0 0 1 1 1 0 1 1 0 0 0 0 0 0 0w w w , 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0  

  1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 0 1w w  

   1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1w w w  

  0  0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 1w w w  

 0    1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1w w w w  

 1 1 0   1 1 0 0 1 1 1 1 0 0 0 0 1 0 1w w w  

   0  1  0 0 0 1 0 1 1 1 0 1 0 0 1 1w w w w w  
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[ ]21,7,5� �� � 

[ ]21,8,4� �� � 

[ ]21,9,4� �� � 

[ ]21,10, 4� �� � 

[ ]21,11,4� �� � 

[ ]21,12,3� �� � 

[ ]21,13,3� �� � 

[ ]21,14,3� �� � 

[ ]21,15,3� �� � 

[ ]21,16, 2� �� � 

[ ]21,17,2� �� � 

[ ]21,18,2� �� � 

[ ]21,19,1� �� � 

[ ]21,20,1� �� � 

 0 0      0 0 0 1 1 0 1 0 1 0 1 0 1w w w w w w  

 0  1 0  0   0 1 1 1 0 0 1 1 1 0 0 1w w w w w  

 0 0 0 1 1  1 1  0 0 1 0 0 0 0 0 1 1 1w w w  

 0  1  0   0 1  0 1 0 0 1 1 0 1 1 1w w w w w w  

 0 1   0 1 1 1  0  1 1 0 0 0 0 0 1 1w w w w w  

 1   1 1  0  0 0   0 0 1 1 0 0 0 1w w w w w w w  

   0  1     0  0  0 0 1 0 0 1 1w w w w w w w w w w  

  0 0 0    1    1 0  0 1 0 1 1 1w w w w w w w w w  

 1  1 1  0 1   0 0  1   0 1 1 0 1w w w w w w w w  

     1  0  1 0   1 0 0  0 1 1 1w w w w w w w w w w  

  0  0 1 1   0  0 1 1   0  0 1 1 w w w w w w w w w  

 1 1  1 1  1 1  1 1  1 1  1 1  1 1w w w w w w w  

  0   0   0   0   0   0   0w w w w w w w w w w w w w w  

                    w w w w w w w w w w w w w w w w w w w w w  

[ ]23,0,8� �� � 

 

  0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 ,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

w w
 

[ ]23,1,7� �� �      0 0  0 0  0  0 0 0 0 0 0 0 0 0 0 ,

1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

w w w w w w w w
 

[ ]23,11, 4� �� �      0 0  0 1  0  1 1 1 0 0 0 0 0 0 0 ,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

w w w w w w w w
 

[ ]23,12,4� �� � 

[ ]23, 22,1� �� � 

     1 0  0 1  0  1 0 0 1 0 0 0 0 0 0w w w w w w w w  

                      w w w w w w w w w w w w w w w w w w w w w w w  
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Table 1.2 

All of the valid [ ]25 31,n k� �≤ ≤� � for additive cyclic quantum codes 

(“E” means exist) 
\k n  25 27 29 31 

0 E E E E 

1 E E E E 

2  E   

3  E   

4 E    

5 E   E 

6  E  E 

7  E   

8  E   

9  E   

10    E 

11    E 

12     

13     

14     

15    E 

16    E 

17     

18  E   

19  E   

20 E E  E 

21 E E  E 

22     

23     

24 E E   

25  E  E 

26  E  E 

27     

28   E  

29     

30    E 
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Table 1.3 

Some additive cyclic code with highest minimum distance for 31n =  
Parameters Generators 

[ ]31,15,5� �� � 
    0 0  1   1  0  1 1  0 0  1  0 0 0 0 0 0 0 0 0w w w w w w w w w w w w , 

1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0  

[ ]31,16,5� �� � 
    1 0  1   1  1  1 0  1 0  1  1 0 0 0 0 0 0 0 0w w w w w w w w w w w w , 

1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0  

[ ]31,20,4� �� �  1 0 0 1   0 1  0   0 1    0   0 0 0 1 1 0 1 0 0 1w w w w w w w w w w w  

[ ]31,21, 4� �� �   0 0 1  0  1    1  1  0 1   1  1 0 1 1 1 1 1 1 1w w w w w w w w w w w w  

 
 
5. Conclusion 

All of the codes listed in table 1.1, except the codes [ ] [ ]11,0,4 , 11,1,3� � � �� � � �, meet the lower 

bounds in the table of [1], which are the best additive quantum codes we can achieve now.  
Thus, to a great degree, searching the best quantum codes can be replaced by searching the 
best additive cyclic quantum codes.  The search complexity will therefore be greatly 
reduced.                                             
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