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Preliminary notes

1 Introduction

In these notes we discuss stochastic models for a simplified wireless network that
consists of a collection of spatially distributed stations equipped with emitters and/or
receivers for transmission over a common communication channel. The modeling
approach is based on using Poisson point processes for the spatial locations as well
as for other signaling characteristics of the network nodes.

Throughout we work from the premises that the transmission of signals is syn-
cronized and slotted in time so that in a fixed time slot each sender attempts to emit
the equivalent of one symbol. The signal power is affected by random fading and
attenuation proportional to the traveled distance. Using simple Poisson models and
superpositioning the effect of all stations in one slot it is possible to obtain some
insights into the balance between node density and node interference.

For traffic sessions over a fixed or random number of slots and under assumptions
of Rayleigh fading, we propose a modeling scenario based on the Lévy gamma sub-
ordinator process and its relation to complex Gaussian waweforms. These models
can be extended to sessions which are Poisson in both space and time, and have
short-tailed or heavy-tailed random session duration times. It is possible also to in-
clude lognormal fading. This is a mechanism supposed to act on the slow time scale
of sessions, which is in contrast to Rayleigh fading that generate random variation
on the fast scale of slots. For the traffic session models it is possible to perform a
scaling approximation to analyze the fluctuations that build up in the interference
field.

1.1 Poisson integral calculus

We recall briefly some of the basic tools for handling stochastic integrals with respect
to Poisson mesaures, see e.g. Kingman [Ki]. For general theory, see e.g. Kallenberg
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[Ka]. We consider a Poisson point measure N =
∑

j δXj defined on a measurable
state space X. The intensity measure (or mean measure) is a σ-finite measure n also
defined on X. For any set A ⊂ X, the number of points in A, N(A) =

∑
j I{Xj ∈ A},

has the Poisson distribution with mean n(A) (if n(A) is infinite, N(A) is countably
infinite with probability one). For any disjoint sets A1, . . . , An in X the variables
N(A1), . . . , N(An) are independent.

Let f : X → R be a measurable function. The stochastic integral of f with
respect to N , ∫

X
f(x) N(dx) =

∑
j

f(Xj),

exists (the sum is absolutely convergent) with probability one if and only if∫
X

min(|f(x)|, 1) n(dx) < ∞.

For such functions f , the distribution of the Poisson integral is determined by the
characteristic function

E exp
{

iθ

∫
X

f(x) N(dx)
}

= exp
{∫

X
(eiθf(x) − 1) n(dx)

}
, θ ∈ R.

In particular,

E

∫
X

f(x) N(dx) =
∫

X
f(x) n(dx)

and
Var

∫
X

f(x) N(dx) =
∫

X
f(x)2 n(dx)

The compensated (or centered) stochastic integral∫
X

f(x) N(dx)− E

∫
X

f(x) N(dx) =
∫

X
f(x) (N(dx)− n(dx))

with respect to the compensated measure Ñ(dx) = N(dx)− n(dx), has the charac-
teristic function

E exp
{

iθ

∫
X

f(x) Ñ(dx)
}

= exp
{∫

X
(eiθf(x) − 1− iθf(x))n(dx)

}
.

The integral
∫

X f(x) Ñ(dx) exists in L1(X) if and only if∫
X

min(|f(x)|, f(x)2) n(dx) < ∞.

This condition may hold even for functions f such that
∫

X f(x) N(dx) diverges.
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Example Take N(ds, du) Poisson in (−∞,∞)× [0,∞) with intensity n(ds, du) =
ds u−γ−1, and K(s, u) = |(s, s + u) ∩ (0, 1)|. Then∫

R

∫ ∞

0
1 ∧K(s, u) n(ds, du) < ∞,

∫
R

∫ ∞

0
K(s, u) n(ds, du) = ∞

and ∫
R

∫ ∞

0
K(s, u) ∧K(s, u)2 n(ds, du) < ∞.

Thus,

Y =
∫

R

∫ ∞

0
K(s, u) N(ds, du) < ∞ EY =

∫ ∫
K(s, u) n(ds, du) = ∞.

Still, ∫
R

∫ ∞

0
K(s, u) (N(ds, du)− n(ds, du)) < ∞.

2 One-slot models

2.1 Connectivity model

Let FR(r), r ≥ 0, denote a distribution function on R+ and let N(dx, dr) be a
Poisson point process on Rd × R+ with intensity measure n(dx, dr) = λdxFR(dr).
The Poisson points (Xj , Rj) correspond to the nodes of a wireless network. The
nodes consist of radio transmitters with random locations Xj in space and random
transmission radius Rj , which is independent between nodes. In a given transmission
slot a signal from node j reaches any other node within distance Rj . By definition, for
any set A ⊂ Rd×R+ such that

∫
A n(dx, dr) is finite the integral

∫
A N(dx, dr), which

gives the number of network nodes with their positions and transmission capacities
in accordance to A, has the Poisson distribution with expected value

∫
A n(dx, dr).

Moreover, the two Poisson integrals
∫
A1

N(dx, dr) and
∫
A2

N(dx, dr) are independent
whenever the sets A1 and A2 are disjoint.

Place a receiver at y ∈ Rd and consider such a collection of network nodes. The
number of successful one-slot transmissions received at y is given by

M1(y) =
∑

j

I{Rj > |Xj − y|} =
∫

Rd

∫ ∞

0
I{r > |x− y|}N(dx, dr),

and {M1(y), y ∈ Rd} is a stationary integer-valued random field. Write B(x, r) for
the unit ball in Rd with center x and radius r and let |B(x, r)| = |B(x, 1)| rd denote
its volume. Assume that the volume of the random radius ball B(x, R) has finite
expected value, that is ERd < ∞. Then the number of signals picked up by a reciever
at the origin, M1 = M1(0), has finite expected value

EM1 =
∫

Rd

∫ ∞

0
I{r > |x|}n(dx, dr) = λ

∫ ∞

0

∫
Rd

I{r > |x|} dxFR(dr)

= λ

∫ ∞

0
|B(0, r)|FR(dr) = λ|B(0, 1)|E(Rd).
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The moment generating function is

log EeθM1 =
∫

Rd

∫ ∞

0
eθI{r>|x|} − 1) n(dx, dr)

= λ(eθ − 1)
∫

Rd

∫ ∞

0
I{r > |x|}n(dx, dr)

= λ(eθ − 1)|B(0, 1)|E(Rd)

(similarly for characteristic function), which verifies that M1 itself is Poisson dis-
tributed. For fixed transmission radius R = r, the probability that the origin is
connected to at least one network node equals

P (M1 ≥ 1) = 1− e−λ|B(0,1)|rd
.

2.2 Pathloss model

Again the network nodes are located according to a spatial Poisson process with
intensity λdx in Rd. The nodes are stations equipped with transmitters which emit
signals at a power level that is random and independent between nodes. Pathloss is
an attenuation effect which results in a reduction of the signal power in proportion to
the propagation distance between sender and receiver. It is typically assummed that
the expected received power from a sender at distance x is determined by a decreasing
attenuation function a(x) of |x|. A common choice is to consider the specific power
law function a0(x) = |x|−β, where β > d is a parameter for certain physical aspects of
the environment of the communication system, [S, IHV, YP, BBM]. More realistically
the attenuation function should be bounded in zero. Indeed, the amplification effect
for emitters close to the receiver which is a result of the singularity of a0 at the origin
is absurd. To begin with, we use a0 despite of these shortcomings since then certain
calculations become more explicit. Later we will work with a1(x) = (1 + x)−β.

The signal is received correctly if the signal to noise ratio exceeds a given thresh-
old value. Hence, assume that each node is marked with a signal power S ≥ 0 with
distribution FS(ds) which corresponds to the transmission of one symbol in a unit
slot of time. If a node located in x has power S, due to path loss the remaining power
received at the origin is Sa(x). Let W be a fixed or random noise variable, such as
the energy of thermal noise, common for all nodes in the network and independent
of the radio transmitters. We fix the threshold T and say that a transmission from
point x to the origin is successful if the signal to noise ratio exceeds the threshold,
that is

SNR =
S a(x)

W
> T.

To see how this model relates to the connectivity model, we rephrase in terms
of a Poisson point process N(dx, ds) with intensity measure n(dx, ds) = λdxFS(ds)
defined on Rd × R+. The number of nodes with signals successfully received at the
origin is given by

M2 =
∑

j

I{Sja(Xj) > TW} =
∫

Rd

∫ ∞

0
I{s a(x) > TW}N(dx, ds).
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Using a0(x) = |x|−β,

M2 =
∫

Rd

∫ ∞

0
I{(s/TW )1/β > |x|}N(dx, ds).

Thus, in this case the pathloss model is equivalent to the connectivity model with
radius

R = (S/TW )1/β , FR(r) = P (S < TWrβ) = FS(TWrβ),

and so

EM2 = λ|B(0, 1)|E[(S/TW )d/β] = λ|B(0, 1)|T−d/βE(Sd/β) E(W−d/β).

This shows that the basic assumption to impose on S is the moment condition
E(Sd/β) < ∞. Since β > d it suffices for this to assume the finite mean condition
ES < ∞. The additional moment condition for external noise seen to be necessary
to keep EM2 finite, is somewhat artificial and can be attributed to the singularity
of a0.

Rayleigh fading

The Rayleigh fading pathloss model takes for S the exponential distribution. The
motivation for this comes from the underlying picture of the signal as a complex
waveform Z = X + iY with Gaussian real and imaginary parts. If we assume in fact
that X and Y are independent zero mean Gaussian random variables with variance
σ2 then the power of the wave is given by the squared amplitude X2 + Y 2, which
has an exponential distribution with mean 2σ2.

Under the Rayleigh fading assumption with exponential signal power FS(s) =
1−e−µs applied to the pathloss model we obtain the corresponding radius distribution

P (R > r) = EP (S > TWrβ |N0) = E(e−µTWrβ
), r ≥ 0.

For W = w constant this is a Weibull distribution with

ER = β−1Γ(1/β)
1

(µwT )1/β

For W exponential with mean w:

P (R > r) =
1

1 + µwTrβ
, r ≥ 0.

2.3 Multicast model

Consider users with random spatial locations in Rd determined by a Poisson point
process with intensity measure λdx. The users are potential receivers of a signal of
power S which is emitted at the origin. The transmission is subject to attenuation
pathloss according to a0(x) = |x|−β and occurs under thermal noise W . The number
of users that recieve the transmitted message equals

M3 =
∑

j

I{S a(Xj) > TW} =
∫

Rd

I{S a(x) > TW}N(dx).
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The distribution of M3 is determined by the characteristic function

E(eiθM3) = E exp
{

λ(eiθ − 1)
∫

Rd

I{S > WT |x|β} dx
}

= E exp{λ(eiθ − 1)|B(0, 1)|(S/WT )d/β}.

Thus, M3 is a mixed Poisson random variable with a random intensity which depends
on the non-fading signal to noise ratio S/W . The expected value remains the same
as for the pathloss model, EM3 = EM2.

2.4 Interference model

Using the same notation as for the pathloss model we introduce the field of Poisson
interferers as the shot noise process

Iλ(y) =
∑

j

Sja(Xj − y) =
∫

Rd

∫ ∞

0
s a(x− y) N(dx, ds), y ∈ Rd,

which gives the total contribution to interference noise generated by all signals emit-
ted from the network and observed at a point y after pathloss power reduction
according to attenuation a. The distribution of Iλ(y) is stationary over y ∈ Rd. For
Iλ = Iλ(0) and a = a0 we compute the logarithmic characteristic function

log E(eiθIλ) =
∫

Rd

∫ ∞

0
(eiθa(x)s − 1) n(dx, ds)

= λ|B(0, 1)|
∫ ∞

0
E(eiθS/rβ − 1)rd−1 dr

= λ|B(0, 1)|
∫ ∞

0
E(eiθSt − 1)β−1t−d/β−1 dt

= λ|B(0, 1)|E(Sd/β)
∫ ∞

0
(eiθt − 1)β−1t−d/β−1 dt

= λ|B(0, 1)|E(Sd/β) C(sign θ) |θ|d/β, (1)

where the constant C(·) depends on the sign of the real number θ. This shows that
Iλ has an α-stable distribution with stable index α = d/β < 1. Within this context,
such links between Poisson shot noise models and α-stable distributions have been
utilized in e.g. [S], [XP] for similar models where the signal S has a symmetric
distribution and the resulting interference process is symmetric α-stable. The stable
distribution for Iλ is highly variable. For instance, the only finite moments are those
of order γ < d/β. This is again an artifact of the singular shape of a0.

It follows by inspecting the above characteristic function that the interference
field admits the stable type scaling relation

Iλ(y) d= λβ/d I1(y)

Moreover, for θ > 0,

− log E(e−θIλ) = λ|B(0, 1)|E(Sd/β)
∫ ∞

0
(1− e−θt)β−1t−d/β−1 dr

= λCd,βE(Sd/β) θd/β,
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where
Cd,β = |B(0, 1)|Γ(1− d/β)/d.

Next, position a source of signal power S at x ∈ Rd. The emitted signal is
received at the origin uncorrupted by interference if the signal to interference and
noise ratio exceeds a threshold value T in the sense

SINR =
S a(x)
W + Iλ

> T.

The probability of a successful transmission is therefore given by P (S a(x) > T (W +
Iλ). If we ignore the background noise by putting W = 0 and use interference
scaling it is seen that transmission over distance r with attenuation parameter β
that requires signal to interference ratio T has a success probability which scales
according to

pr(λ) = P (Sa0(x) > TIλ) = P (S > (λ1/dr)βTI1) = pλ1/dr(1)

(c.f. [BBM], Lemma 3.3). Returning to the model with external noise W but assum-
ing Rayleigh fading with S exponential of mean 1/µ, we have

P (S a(x) > T (W + Iλ)) = E(e−µT (W+Iλ)/a(x)) = E(e−µTW/a(x)) E(e−µTIλ/a(x)).

Here,

E(e−µTIλ/a(x)) = exp
{
−λCd,βE(Sd/β) (µT/a(x))d/β

}
= exp

{
−λCd,βΓ(1 + d/β) T d/β|x|d

}
= exp

{
− λ

dπ/β

sin(dπ/β)
T d/β|x|d

}
Summing up, with Rayleigh fading and without external noise the success probability
equals

pr(λ) = exp
{
− λ

dπ/β

sin(dπ/β)
T d/βrd

}
. (2)

Finite mean interference

For a general attenuation function a(x), the expected value of the interference field
equals

EIλ(y) =
∫

Rd

∫ ∞

0
s a(x− y) n(dx, ds) =

∫
Rd

a(x) dx E(S), y ∈ Rd,

which is finite if we take for instance a1(x) = (1 + |x|)β, β > d.
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2.5 Node density versus interference

Medium access control protocols aim at preventing users close to each other to access
the network and emit signals simultaneously over a shared channel. With many
active users per unit of space the interference field increases in strength. This has the
counter effect that the signal to noise and interference ratio, and hence the probability
of successful transmission between a given user-destination pair, decreases.

A recent study of spatial reuse Aloha, [BBM], uses a similar framework as the
one described here to optimize the medium access probability p that maximizes the
expected number of successful transmissions in a region. In the rest of this section we
give essentially an account of the results of Propositions 4.1 and 4.3 in [BBM]. Given
the node intensity λ, if we assume that the stations are potentially dormant and
attempt to send signals independently with probability p this amounts to thinning
the Poisson point measure resulting in the new intensity λp. Assume that each
station which access the medium expects to transmit over a fixed distance r with
threshold T , to some destination user which is not considered part of the network.
If the accessing station is the Poisson point (Xj , Sj) and the user is located at Yj

with |Xj − Yj | = r, then the transmission is successful if Sj a(Xj − Yj) > TIλp(Yj).
Hence the expected number of successful users in a region S ⊂ Rd in which there is
no external noise equals

E
∑
Xj∈S

I{Sja(r) > TIλp(Yj)} =
∫

S
P (Sa(r) > TIλp) λpdx

= λp|S|P (Sa(r) > TIλp)
= λ′pr(λ′) |S|, λ′ = λp.

This shows that we can find the optimal medium access probability p for transmission
over fixed range r, by maximizing λpr(λ) over λ > 0. For S not identically vanishing,
pr(λ) > 0 for some λ > 0. By Chebyshevs inequality, for p > 0

pr(λ) = pλ1/dr(1) = P (S > Tλβ/drβI1) ≤ E(Sp)E(I−p
1 )

1
T pλpβ/drpβ

(3)

Here,

E(I−p
1 ) =

1
Γ(p)

∫ ∞

0
sp−1E(e−I1s) ds

=
1

Γ(p)

∫ ∞

0
sp−1 exp{−Cd,βE(Sd/β)sd/β} ds

=
β/d

Γ(p)

∫ ∞

0
spβ/d−1 exp{−Cd,βE(Sd/β)s} ds

=
(β/d)Γ(pβ/d)

Γ(p)(Cd,βE(Sd/β))pβ/d
< ∞ (4)

Thus, if E(Sp) < ∞ for some p > d/β, then

λpr(λ) ≤ const
1

λpβ/d−1
→ 0, λ →∞,
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and so there exist an optimal node intensity λmax which maximizes the performance
of the network, under the given conditions.

A crude bound for pr(λ) is obtained by taking p = d/β in (3) and (4). This yields

pr(λ) ≤ 1
T d/βλrd

E(Sd/β)E(I−d/β
1 )

=
1

T d/βλrd

β

Γ(d/β)|B(0, 1)|Γ(1− d/β)

=
1

T d/βλrd

β sin dπ/β

|B(0, 1)|π

For the special case of Rayleigh fading the exact formula (2) shows already that

λmax =
sin dπ/β

dπ/β
T d/βrd and λmaxpr(λmax) = e−1 sin dπ/β

dπ/β
T d/βrd.

3 Traffic session modeling

3.1 Rayleigh fading over fixed length session

It is shown in [VTY], based on results in [PY], that it is possible to construct a
two-parameter real-valued stochastic process {Γv(t), v ≥ 0, t ≥ 0} which is a gamma
subordinator process in t and a squared Bessel diffusion in v. It is suggested in [GK]
and [K] that this yields an appropriate model for Rayleigh fading developing over
time. For fixed v, {Γv(t), t ≥ 0} with Γv(0) = 0 is the Lévy process with Lévy mea-
sure ν(dy) = y−1e−y/v dy. This is a stochastic process with independent increments
known as the gamma subordinator. Our interpretation is that the subordinator in-
crements yield the cumulative increase of energy pulses from a given emitter over
time. For fixed t, the process Γv(t), v ≥ 0, Γ0(t) = 0, is a squared Bessel diffusion
with fractal dimension 2t and variance parameter v/2. This means in particular
that we have the representation Γv(k) =

∑k
j=1(X

2
j + Y 2

j ) in terms of Gaussian ran-
dom variables Xj , Yj , j ≥ 1, with zero mean and variance v/2. Again this provides
an interpretation of Rayleigh fading stemming from the variations in the squared
amplitude of a complex Gaussian wave.

Taking t = 1 and v = 1/µ we recover the Rayleigh fading model discussed above.
To put this in the Poisson point process framework, let Qv

0(dγ) be the distribution
for paths {γ(t), t ≥ 0} of the subordinator Γv(t). We write D for the state space
of increasing pure jump trajectories. With each poisson point in Rd we associate a
gamma subordinator with distribution Q

a(x)
0 and let Nλ(dx, dγ) be the Poisson point

process in Rd×D with intensity measure λdxQ
a(x)
0 (dγ). The cumulative interference

observed at a point y at time t is given by

Iλ(t, y) =
∫

Rd

∫
D

γ(t)a(x− y) Nλ(dx, dγ),

which is stationary in y and has independent increments in t. The functional Iλ(t) =
Iλ(0, t) picks out the terminal value of the path at time t observed at the origin. As
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in (1), using a = a0,

log E(eiθIλ(t)) =
∫

Rd

∫
D

(eiθγ(t) − 1) λdxQ
a(x)
0 (dγ)

= λ|B(0, 1)|
∫ ∞

0
E(eiθΓ1(t)/rβ − 1)rd−1 dr

= λ|B(0, 1)|E(Γ1(t)d/β) C(sign θ) |θ|d/β.

Modified multicast model

If we apply the gamma subordinator model to the multicast situation with one active
emitter at the origin and receivers placed in Rd with Poisson intensity λdx, then for
a fixed t we have

M3(t) =
∫

Rd

I{Γa(x)(t) > TW}N(dx),

where the integrand is a function of the squared Bessel process {Γv(t), v ≥ 0}, after
“time change” v = a(x). With a = a0 this yields

E(eiθM3(t)) = E exp
{

λ(eiθ − 1)
∫

Rd

I{Γa0(x)(t) > TW} dx
}

= E exp
{

λ(eiθ − 1)|B(0, 1)|
∫ ∞

0
I{Γa0(r)(t) > TW} rd−1 dr

}
= E exp

{
λ(eiθ − 1)|B(0, 1)|

∫ ∞

0
I{Γv(t) > TW}β−1v−d/β−1 dv

}
.

This is a mixed Poisson representation with a random intensity expressed as a
weighted occupation time functional of the Bessel diffusion process.

3.2 Lognormal fading

Lognormal fading is considered to be a multiplicative effect of wave shadowing.
Small multiplicative variations of the wave energy subject to a Gaussian approxi-
mation on the logarithmic scale, lead to the assumption that the signal power has a
lognormal distribution. The changes in shadowing effect occur on a relatively slow
time scale. It is natural therefore to assume that the lognormal distribution is fixed
throughout a traffic session. Additional random variation due to Rayleigh fading
are superimposed, conditional on the lognormal average. To prepare for a study of
the fluctuations around a finite mean interference field, we will work here with the
attuenation function a1(x) = 1/(1 + |x|)β.

More precisely, let X represent the received power measured in decibel emitted
from a station at x. We assume that X is normally distributed N(µ(x), σ2

L), where
µ(x) = −β log(1 + |x|) and the variance σ2

L > 0 is a given constant. Put Vx = eX .
Then Vx has a lognormal distribution such that for n = 1, 2, . . . the integer moments
are given by

EV n
x = exp{nµ(x) + n2σ2

L/2} = a1(x)n exp{n2σ2
L/2} =

1
(1 + |x|)nβ

exp{n2σ2
L/2},
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Conditional on Vx = v, recall that the increment Γv(k + 1) − Γv(k) represents the
power of a symbol emitted from x and recieved at the origin during slot k. In this
way the evolution of the process ΓVx(t), t ≥ 0, yields the Rayleigh variation of an
emitter in x during a traffic session with lognormal power fading and attenuation
given by a1.

Write Fx(v) = P (Vx ≤ v) for the distribution function of Vx. The relevant Poisson
measure Nλ,y(dx, dv, dγ) for this situation has intensity λdxFx−y(dv) Qv

0(dγ). The
interference field

Iλ(t, y) =
∫

Rd

∫ ∞

0

∫
D

γ(t) Nλ,y(dx, dv, dγ)

at y = 0 has

log E(eiθIλ(t)) =
∫

Rd

∫ ∞

0

∫
D

(eiθγ(t) − 1) λdxFx(dv)Qv
0(dγ)

= λ

∫
Rd

∫ ∞

0
E(eiθΓv(t) − 1) Fx(dv)dx

= λ

∫
Rd

E
[( Vx

1− iθVx

)t
− 1

]
dx.

Success probability A source located in x, |x| = r, has attenuation a and oper-
ates in the presence of a Poisson interference field with lognormal fading. There is
no additional external noise. The probability that all t slots of a session transmitted
from x is recieved correctly at the origin is

pr(λ) = P (SNIR > T ) = P (∆Γa(r)(j) > T∆Iλ(j), 1 ≤ j ≤ t),

so that
− log pr(λ) = λ

∫
E

[
1−

( a(r)
a(r) + TVy

)t]
dy.

If we make a series expansion in T for T → 0 and keep a keep a linear and a quadratic
term this yields

− log pr(λ) ≈
{

λta(r)
∫

Rd

EVy dy T − λt(t + 1)a(r)2
∫

Rd

EV 2
y dy T 2

}
, T → 0.

3.3 Temporal-spatial traffic sessions

We develop the model further by imagining signal emitters at random locations in
space that transmit calls with random initial times and random call holding times.

The initial time s, the location x, and the call holding time u of each transmission
is given by a point (s, x, u) of a Poisson point measure on R×Rd×R+ with intensity
λdsdxG(du), where G(u) = P (U ≤ u) is the distribution function of the lifelength
U of a typical traffic session. With each session (s, x, u) we associate a further
mark (v, γ) picked with intensity Fx(dv) Qv

0(dγ), which yields independently of the
temporal-spatial location (s, x) and the call duration u a lognormal fading level v
and a gamma subordinator γ that generate pulses during the time interval (s, s+u).
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To record the cumulative interference field during an observation interval [0, t], we
introduce

Kt(s, u) =
∫ t

0
I{s < y < s + u} dy = |(s, s + u) ∩ (0, t)|,

which measures the fraction of the time interval [0, t] during which a session that
starts at time s and has duration u is active. Letting Nλ(dsdx, du, dv, dγ) be the
Poisson measure with intensity λdsdxG(du) Fx(dv) Qv

0(dγ), it is seen that the con-
tribution to the interference field at y = 0 in the interval [0, t] is given by

Iλ(t) =
∫

R×Rd

∫ ∞

0

∫ ∞

0

∫
D

γ(Kt(s, u))Nλ(dsdx, du, dv, dγ).

The expected value is

EIλ(t) =
∫

R×Rd

∫ ∞

0

∫ ∞

0
EΓv(Kt(s, u))λdsdxFx(dv) G(du)

=
∫

R×Rd

∫ ∞

0
E(Vx)Kt(s, u) λdsdxF (du)

= λ eσ2
L/2

∫
Rd

a1(x) dx

∫ ∞

−∞

∫ ∞

0
Kt(s, u) ds F (du)

= λ eσ2
L/2 |B(0, 1)|(β − d)−1 EU t

since ∫ ∞

−∞
Kt(s, u) ds =

∫ ∞

−∞

∫ t

0
I{y − u < s < y} dy ds = ut.

For the variance we obtain similarly

VarIλ(t) =
∫

R×Rd

∫ ∞

0

∫ ∞

0
E(Γv(Kt(s, u))2) λdsdxFx(dv) G(du)

= λ

∫
Rd

E(V 2
x )

∫ ∞

−∞

∫ ∞

0
Kt(s, u)(Kt(s, u) + 1) ds G(du)

= λ e2σ2
L

∫
Rd

a2
1(x) dx

(
tEU +

∫ ∞

−∞

∫ ∞

0
Kt(s, u)2 ds G(du)

)
.

The remaining double integral may be recast in the form∫ ∞

−∞

∫ ∞

0
Kt(s, u)2 dsG(du) =

∫ t

0

∫ t

0
dydy′

∫ ∞

|y−y′|
(1− |y − y′|/u) G(du). (5)

We remark that the variance of the interference functional may exist finitely even if
the call duration distribution is heavy-tailed in such a way that u has finite mean
but infinite variance.

3.4 Fluctuations in the interference field

The fluctuations of the Poisson interferers around the mean level are described by
the compensated Poisson integral

Jλ(t) = Iλ(t)− EIλ(t) =
∫

R×Rd

∫ ∞

0

∫ ∞

0

∫
D

γ(Kt(s, u)) Ñλ(dsdx, du, dv, dγ),
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where

Ñλ(dsdx, du, dv, dγ) = Nλ(dsdx, du, dv, dγ)− λdsdxG(du) Fx(dv) Qv
0(dγ)

is the compensated Poisson measure. We have

log E(eiθJλ(t)) (6)

=
∫

R×Rd

∫ ∞

0

∫ ∞

0
E(eiθΓv(Kt(s,u)) − 1− iθΓv(Kt(s, u)))λdsdxG(du)Fx(dv)

=
∫

R×Rd

∫ ∞

0

∫ ∞

0
(e−Kt(s,u) log(1−ivθ) − 1− ivθKt(s, u))λdsdxG(du)Fx(dv).

It can be shown that [GK, in progress]

log E(eiθJλ(t)) = Rλ(t, θ)

+
∫

R×Rd

∫ ∞

0

∫ ∞

0
(eivθKt(s,u) − 1− ivθKt(s, u))λdsdxG(du)Fx(dv), (7)

where
|Rλ(t, θ)| ≤ 1

2
e2σ2

L

∫
Rd

a(x)2 λdxE(U) t θ2. (8)

Scaling analysis

We investigate the regime of high density networks under time rescaling. This is to
say, we let λ →∞ while scanning the interference fluctuations over the time interval
[0, at], where a = aλ →∞ is an additional scaling parameter. Is there a normalizing
sequence b = bλ such that b−1Jλ(a) has a limit in distribution?

Suppose first that the call holding time has finite second moment, EU2 < ∞.
In this case, take any sequence a → ∞ and put b =

√
λa. The finite-dimensional

distributions of

b−1Jλ(at) =
1
b

∫
R×Rd

∫ ∞

0

∫ ∞

0

∫
D

γ(Kat(s, u)) Ñλ(dsdx, du, dv, dγ)

converge to those of a Brownian motion as λ, a → ∞, [GK]. The proof of con-
vergence of the marginal distribution can be carried out by verifying the following
approximative steps. By (6),

log E(eiθb−1Jλ(at))

∼
∫

R×Rd

∫ ∞

0

∫ ∞

0
(e−Kat(s,u) log(1−ivθ/b) − 1− ivθKat(s, u)/b) λdsdxG(du)Fx(dv)

∼ −1
2

∫
R×Rd

∫ ∞

0

∫ ∞

0

(vθ

b

)2
(Kat(s, u)2 + Kat(s, u))λdsdxG(du)Fx(dv)

∼ −1
2
θ2

∫
Rd

E(V 2
x ) dx

∫ ∞

−∞

∫ ∞

0
(Kat(as, u)2 + Kat(as, u)) ds G(du)

∼ −1
2
θ2

∫
Rd

E(V 2
x ) dx (E(U2) + E(U)) t,
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since
Kat(as, u) → u I{0 < s < t}, a →∞.

These approximations can be verified and extended to the finite-dimensional dis-
tributions. Thus, the distributional limit of Jλ(at)/

√
λa is Brownian motion with

variance
∫

Rd E(V 2
x ) dxE(U2 + U).

3.4.1 Heavy-tailed call holding times

Assume that the distribution for the call durations has a regularly varying tail at
infinity, 1 − G(u) = L(u)u−γ , for a slowly varying function L and with index of
regular variation γ, 1 < γ < 2. Under this assumption U has finite mean but infinite
variance. In this situation there are three possible scaling regimes given by the
relative speed at which λ and a tend to infinity. We consider

• Fast connection rate: λ/aγ−1 →∞, b2 = λa3−γ

• Intermediate connection rate: λ/aγ−1 → 1, b = a

• Slow connection rate: λ/aγ−1 → 0, bγ = λa

Note that in each of these cases we have for the remainder term Rλ(t, θ) introduced
in (8),

Rλ(at, θ/b) → 0, λ, a →∞.

Hence for each case we want to find the limit of

log E(eiθJλ(at)/b)

=
∫

R×Rd

∫ ∞

0

∫ ∞

0
(eivθKat(s,u)/b − 1− ivθKat(s, u)/b) λdsdxG(du)Fx(dv).

For fast connection rate

log E(eiθJλ(at)/b)

∼ −1
2

∫
Rd

EV 2
x dx

∫ ∞

−∞

∫ ∞

0
(aθKt(s, u)/b)2 λads G(adu)

∼ −1
2
θ2

∫
Rd

EV 2
x dx

∫ ∞

−∞

∫ ∞

0
Kt(s, u)2 ds u−γ−1du.

By (5),∫ ∞

−∞

∫ ∞

0
Kt(s, u)2 ds u−γ−1du =

∫ t

0

∫ t

0
dydy′

∫ ∞

|y−y′|
(1− |y − y′|/u) u−γ−1

= const
∫ t

0

∫ t

0
dydy′|y − y′|−(γ−1) = const t3−γ .

In general, we obtain the finite-dimensional distribution of fractional Brownian mo-
tion with Hurst index H = (3− γ)/2.
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The intermediate scaling regime yields the limit

log E(eiθJλ(at)/a)

→
∫

R×Rd

∫ ∞

0

∫ ∞

0
(eivθKt(s,u) − 1− ivθKt(s, u)) dsdxu−γ−1Fx(dv),

which is the characteristic function of∫
R×Rd

∫ ∞

0

∫ ∞

0
Kt(s, u) Ñ(dsdx, du, dv)

where Ñ is a compensated Poisson measure with intensity measure dsdxu−γ−1Fx(dv).
The covariance structure of this process is the same as that of fractional Brownian
motion with Hurst index 3− γ.

Finally, the limit in the case of slow connection rate is a stable Lévy process with
stable index 1/γ.
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