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The character of a Gln(C) module is given by the formula

chGln(C)(M) =
∑
b∈M

b


x1 0 . . . 0
0 x2 . . . 0

0 0
. . . 0

0 0 . . . xn




coef b

where the sum runs over a basis of the module M . This expression is a symmetric function
in the indeterminates xi.

The character determines the decomposition of the module into irreducibles. If the
module has a character given by a Schur function in the variables x1, x2, . . . , xn then the
module is irreducible. The character is a function of the eigenvalues of the matrix to C.

Since the symmetric group (represented as permutation matrices) is a natural subgroup
of Gln(C) we ask the following question:

Question: Given an irreducible Gln(C) module, how does it decompose into irreducible
Sn modules?

This turns out to be easy to compute for specific examples. I don’t know the answer
to this question in general and it would be very useful to have a clear expression for this
decomposition. The character of a Gln(C) module M at a permutation matrix Aσ will be
the evaluation of the symmetric function chGln(C)(M)(x1, x2, . . . , xn) at the eigenvalues of
the matrix Aσ.

Now the eigenvalues of the matrix Aσ are determined by the cycle structure of the per-
mutation σ and they will be Ξλ1 ,Ξλ2 , . . . ,Ξλr where Ξm = 1, e2πi/m, e4πi/m, . . . , e2(m−1)πi/m

(the m roots of unity).

Example: So for instance, the irreducible Gl3(C) module with character s(5)(x1, x2, x3)
considered as an S3 module has an S3 character that when evaluated at the identity
has character equal to s(5)(1, 1, 1) = 21. The character evaluated at the permutation
(12)(3) will be s(5)(1,−1, 1) = 3. The character evaluated at the permutation (123) will
be s(5)(1, e2πi/3, e4πi/3) = 0.
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As an example, we consider M as the Gln(C) module consisting of the polynomials in n
variables of degree k. That is, M = {yα1

1 · · · yαn
n : α1 + · · ·+ αn = k}. Note that M has a

character given by

chGln(C)(M) =
∑

yα∈M

yα


x1 0 . . . 0
0 x2 . . . 0

0 0
. . . 0

0 0 . . . xn




coef yα

=
∑

yα∈M

xα = s(k)(x1, . . . , xn).

We define the Frobenius characteristic of an Sn character as

FSn(χ) =
∑
λ`n

χ(σ(λ))pλ/zλ

where σ(λ) is a permutation of cycle type λ. For a Gln(C) character f(x1, x2, . . . , xn) we
have that

FSn(f(x1, x2, . . . , xn)) =
∑
λ`n

f [Ξλ1 + · · ·+ Ξλ`(λ)
]pλ/zλ.

Example: The example of the module with character s(5)(x1, x2, x3), we have already
calculated the Frobenius image as FS3(s(5)(x1, x2, x3)) = 21p(111)/6 + 3p(21)/2. But we
have also determined that the module is isomorphic to the polynomials of degree 5 in three
variables. Since we know that the Frobenius image of the polynomial ring in 3 variables
has a graded Frobenius image of h3

[
X

1−q

]
hence we know that the coefficient of q5 in the

expression will be equal to the Frobenius image FS3(s(5)(x1, x2, x3)). Since we know that

h3

[
X

1− q

]
= s(3)[X]s(3)

[
1

1− q

]
+ s(21)[X]s(21)

[
1

1− q

]
+ s(111)[X]s(111)

[
1

1− q

]
then we know that the coefficient of q5sλ[X] will be the number of column strict tableaux
of shape λ with entries in 0, 1, 2, 3, . . . whose entries sum to 5.

For λ = (3) we know that the tableaux are given by 0 0 5 , 0 1 4 , 0 2 3 , 1 1 3 ,
1 2 2 .

For λ = (2, 1) the tableaux are given by
5
0 0 ,

4
0 1 ,

1
0 4 ,

3
0 2 ,

2
0 3 ,

2
1 2 ,

3
1 1 .

For λ = (1, 1, 1) the tableaux are given by

4
1
0 and

3
2
0 .

We conclude that FS3(s(5)(x1, x2, x3)) = 5s(3) + 7s(21) + 2s(111).

Notice that in general that we can express the special case

FSn(s(k)(x1, . . . , xn)) =
∑
λ`n

c
(k)
λ sλ
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where c
(k)
λ is the number of column strict tableaux of shape λ whose entries sum to k.

Macdonald also gives another interpretation of this coefficient (p. 81 example 14). c
(k)
λ

is also the number of column strict plane partitions of shape λ. A plane partition is a stack
of blocks with adjacent stacks which are weakly decreasing in height. A plane partition is
column strict if the stacks are strictly decreasing in the columns.

Note that this is similar to the last interpretation except that the order of the alphabet
is reversed since these objects are equivalent to column strict tableaux of shape λ with
entries that are weakly decreasing rows and strictly decreasing in columns.

We remark that given two Gln(C) modules, their (inner) tensor product will have char-
acter as the product of the product of the modules. That is, for modules M , N ,

chGln(C)(M ⊗N) = chGln(C)(M)chGln(C)(N).

This follows directly from the definition of the character.
We also have that the Frobenius image satisfies FSn(fg) = FSn(f) ∗ FSn(g) where ∗

is the inner tensor product (Kronecker product). The Kronecker product on symmetric



4 MIKE ZABROCKI

functions is defined as pλ/zλ ∗ pµ/zµ = δλµpλ/zλ. It then follows that

FSn(f) ∗ FSn(g) =

(∑
λ`n

f [Ξλ1 + · · ·+ Ξλ`(λ)
]pλ/zλ

)
∗

(∑
λ`n

g[Ξλ1 + · · ·+ Ξλ`(λ)
]pλ/zλ

)
=
∑
λ`n

f [Ξλ1 + · · ·+ Ξλ`(λ)
]g[Ξλ1 + · · ·+ Ξλ`(λ)

]pλ/zλ

= FSn(fg)

Macdonald (p. 50 example 17) talks about the evaluation of a Schur function at the sum
of roots of unity. sλ[Ξm] = ±1 if λ has an empty m-core (i.e. it can be tiled with ribbons
of length m) and sλ[Ξm] = 0 otherwise. The sign of sλ[Ξm] will be the sign of the unique
permutation σ such that λ + δm = σ(δm) (mod m) where δm = (m− 1,m− 2, . . . , 1, 0).

It is quite simple to write a short program which accepts a symmetric function and
a value of n (determining which copy of Gln(C) on is working in) and which returns a
symmetric function which returns the Frobenius image of this function as an Sn character.

> with(SF)
> psum:=proc(lst,k) local i;
add(lst[i],i=1..k);
end:

> toSnFrob:=proc(expr,n) local i,lambda,j;
add( mul( cat(p,lambda[i]), i=1..nops(lambda))/zee(lambda)*
simplify(subs(seq(seq(x[psum(lambda,i-1)+j+1]=exp(2*Pi*I*j/lambda[i]),
j=0..lambda[i]-1), i=1..nops(lambda)),
evalsf(expr, add(x[i],i=1..convert(lambda,‘+‘))))),
lambda=Par(n));
end:

The program above substitutes the roots of unity in for the variables of the symmetric
function after evaluating the symmetric function at n variables.

We compute an example using this program:
> for i from 1 to 6 do
> tos(toSnFrob(s[1],i));
> od;

s(1)

s(2) + s(11)

s(3) + s(21)

s(4) + s(31)
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s(5) + s(41)

s(6) + s(51)

Observing the data below, one simple conjecture to make (that should not be that hard
to prove) is

Conjecture 1.

FSn(s(1k)(x1, x2, . . . , xn)) = s(n−k,1k) + s(n−k+1,1k−1)

Here is data for FSn(sλ(x1, x2, . . . , xn)) for n ≤ 6 and |λ| ≤ 5. Note that if n ≤ `(λ)
then sλ(x1, x2, . . . , xn) = 0.

FS1(s(1)) = s(1)

FS1(s(2)) = s(1)

FS1(s(3)) = s(1)

FS1(s(4)) = s(1)

FS1(s(5)) = s(1)

FS2(s(1)) = s(2) + s(11)

FS2(s(2)) = 2s(2) + s(11)

FS2(s(11)) = s(11)

FS2(s(3)) = 2s(2) + 2s(11)

FS2(s(21)) = s(2) + s(11)

FS2(s(4)) = 3s(2) + 2s(11)

FS2(s(31)) = s(2) + 2s(11)

FS2(s(22)) = s(2)

FS2(s(5)) = 3s(2) + 3s(11)

FS2(s(41)) = 2s(2) + 2s(11)

FS2(s(32)) = s(2) + s(11)

FS3(s(1)) = s(21) + s(3)

FS3(s(2)) = 2s(3) + 2s(21)

FS3(s(11)) = s(111) + s(21)

FS3(s(3)) = s(111) + 3s(3) + 3s(21)

FS3(s(21)) = s(111) + s(3) + 3s(21)

FS3(s(111)) = s(111)

FS3(s(4)) = s(111) + 4s(3) + 5s(21)

FS3(s(31)) = 3s(111) + 2s(3) + 5s(21)

FS3(s(22)) = 2s(3) + 2s(21)

FS3(s(211)) = s(111) + s(21)
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FS3(s(5)) = 2s(111) + 5s(3) + 7s(21)

FS3(s(41)) = 4s(111) + 4s(3) + 8s(21)

FS3(s(32)) = 2s(111) + 3s(3) + 5s(21)

FS3(s(311)) = 2s(111) + 2s(21)

FS3(s(221)) = s(3) + s(21)

FS4(s(1)) = s(4) + s(31)

FS4(s(2)) = 2s(4) + 2s(31) + s(22)

FS4(s(11)) = s(211) + s(31)

FS4(s(3)) = s(211) + 3s(4) + 4s(31) + s(22)

FS4(s(21)) = 2s(211) + s(4) + 3s(31) + 2s(22)

FS4(s(111)) = s(1111) + s(211)

FS4(s(4)) = 2s(211) + 5s(4) + 6s(31) + 3s(22)

FS4(s(31)) = 2s(4) + 3s(22) + 5s(211) + s(1111) + 7s(31)

FS4(s(22)) = 2s(4) + 3s(22) + s(211) + 3s(31)

FS4(s(211)) = s(22) + 3s(211) + s(1111) + s(31)

FS4(s(1111)) = s(1111)

FS4(s(5)) = 6s(4) + 4s(22) + 4s(211) + 10s(31)

FS4(s(41)) = 5s(4) + 7s(22) + 9s(211) + 2s(1111) + 12s(31)

FS4(s(32)) = 4s(4) + 5s(22) + 6s(211) + s(1111) + 9s(31)

FS4(s(311)) = 3s(22) + 6s(211) + 3s(1111) + 3s(31)

FS4(s(221)) = s(4) + 2s(22) + 2s(211) + 3s(31)

FS4(s(2111)) = s(211) + s(1111)

FS5(s(1)) = s(5) + s(41)

FS5(s(2)) = 2s(5) + 2s(41) + s(32)

FS5(s(11)) = s(311) + s(41)

FS5(s(3)) = s(311) + 3s(5) + 2s(32) + 4s(41)

FS5(s(21)) = 2s(311) + s(221) + s(5) + 2s(32) + 3s(41)

FS5(s(111)) = s(311) + s(2111)

FS5(s(4)) = 2s(311) + s(221) + 5s(5) + 4s(32) + 7s(41)

FS5(s(31)) = 2s(5) + 7s(41) + 5s(32) + 6s(311) + s(2111) + 2s(221)

FS5(s(22)) = 2s(5) + 3s(41) + 4s(32) + s(311) + 2s(221)

FS5(s(211)) = s(41) + s(32) + 3s(311) + 2s(2111) + 2s(221)

FS5(s(1111)) = s(2111) + s(11111)

FS5(s(5)) = 11s(41) + 7s(32) + 5s(311) + 2s(221) + 7s(5)

FS5(s(41)) = 14s(41) + 3s(2111) + 6s(221) + 5s(5) + 11s(32) + 11s(311)
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FS5(s(32)) = 10s(41) + 2s(2111) + 5s(221) + 4s(5) + 10s(32) + 8s(311)

FS5(s(311)) = 3s(41) + 5s(2111) + s(11111) + 5s(221) + 4s(32) + 8s(311)

FS5(s(221)) = 3s(41) + s(2111) + 4s(221) + s(5) + 4s(32) + 3s(311)

FS5(s(2111)) = 3s(2111) + s(11111) + s(221) + s(311)

FS5(s(11111)) = s(11111)

FS6(s(1)) = s(51) + s(6)

FS6(s(2)) = 2s(51) + s(42) + 2s(6)

FS6(s(11)) = s(51) + s(411)

FS6(s(3)) = 4s(51) + 2s(42) + s(33) + 3s(6) + s(411)

FS6(s(21)) = 3s(51) + 2s(42) + s(6) + 2s(411) + s(321)

FS6(s(111)) = s(3111) + s(411)

FS6(s(4)) = 5s(6) + 7s(51) + 5s(42) + s(33) + s(321) + 2s(411)

FS6(s(31)) = s(3111) + 2s(6) + 7s(51) + 5s(42) + 2s(33) + 3s(321) + 6s(411)

FS6(s(22)) = 2s(6) + 3s(51) + 4s(42) + s(411) + s(33) + 2s(321) + s(222)

FS6(s(211)) = s(51) + s(42) + 3s(411) + 2s(321) + 2s(3111) + s(2211)

FS6(s(1111)) = s(21111) + s(3111)

FS6(s(5)) = 12s(51) + 8s(42) + 5s(411) + 3s(321) + 7s(6) + 3s(33)

FS6(s(41)) = 5s(6) + 14s(51) + 13s(42) + 12s(411) + 4s(33) + 8s(321) + 3s(3111) + s(222) + s(2211)

FS6(s(32)) = 4s(6) + 10s(51) + 11s(42) + 8s(411) + 5s(33) + 8s(321) + 2s(3111) + s(222) + s(2211)

FS6(s(311)) = 3s(51) + 4s(42) + 8s(411) + s(33) + 7s(321) + 6s(3111) + s(222) + 2s(2211) + s(21111)

FS6(s(221)) = s(6) + 3s(51) + 4s(42) + 3s(411) + 2s(33) + 5s(321) + s(3111) + 2s(222) + 2s(2211)

FS6(s(2111)) = s(411) + s(321) + 3s(3111) + 2s(2211) + 2s(21111)

FS6(s(11111)) = s(21111) + s(111111)


