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Model: Agents

• Agents of mass of 2 must each choose one of the two or-

ganizations, A and B.

◦ Each agent is associated with a type θ.

◦ θ is continuously distributed on [0, 1].

• Agents care about the amount of resources Ri(θ) they re-

ceive as a member of the organization they join (pecking

order effect), and the mean type mi of the organization

they join (peer effect), i = A, B.

◦ Payoff to an agent of type θ from joining organiza-

tion i = A,B is V (Ri(θ), mi), with V continuous and

increasing in each argument.
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Model: Organizations

• Capacity constraint: each organization i admits a mass 1

of agents.

• Resource constraint: each organization has a fixed bud-

get Yi of resources that it distributes among its members

according to their rank within the organization.

• Each organization i chooses a resource distribution sched-

ule Si : [0, 1] → IR+.

◦ For each r ∈ [0, 1], Si(r) is amount of resources re-

ceived by an agent whose quantile rank is r in orga-

nization i.

• Set of admissible resource distribution schedules for i: Si

◦ non-negative resources only: Si is non-negative;

◦ meritocracy: Si is non-decreasing;

◦ resource constraint:
∫ 1

0
Si(r) dr ≤ Yi;

◦ technical condition: Si is almost everywhere continu-

ously differentiable.

• Organization’s objective: each organization i maximizes

its own quality mi, the average type of its members.
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Model: Timing

• Resource distribution stage: A and B simultaneously choose

resource distribution schedules SA and SB .

• Sorting stage: given (SA, SB), sorting equilibrium deter-

mines allocation of agents and payoffs to organizations.

• A two-stage game
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Model: Feasible allocations at sorting stage

• A feasible allocation is a pair (HA,HB) of cumulative type

distributions in organizations A and B such that

HA(θ) + HB(θ) = 2θ for all θ ∈ [0, 1].

• We are implicitly restricting attention to allocations where

all agents join one organization.

◦ Joining any organization is better than not joining

either.

• The rank of an agent θ in each organization depends on

the allocation (HA,HB):

rA(θ) = HA(θ);

rB(θ) = HB(θ).

• Average type mi =
∫

θ dHi(θ).

• Payoff of type θ from joining organization i is V (Si(ri(θ)),mi).
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Model: Definition of sorting equilibrium

• Given an allocation, (HA,HB), an agent θ assigned to i

has the option to move to organization j, if the agent’s

type is higher than the lowest type in organization j.

• Definition 1. Given resource distribution schedules (SA, SB),

a sorting equilibrium is a feasible allocation (HA,HB) such

that if Hi is strictly increasing on (θ, θ′) and Hj(θ) > 0,

then V (Si(ri(θ)),mi) ≥ V (Sj(rj(θ)),mj).

◦ Hi increasing on (θ, θ′) means that agents of types in

this interval are joining i.

◦ If Hj(θ) > 0, these agents could move to j.
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Model: Existence and selection of sorting equilibrium

• Each sorting equilibrium (HA, HB) is associated with a

fixed point of the mapping from the set of possible mA’s

to itself.

◦ The mapping is monotone increasing so a fixed point

exists.

• Multiple sorting equilibria may exist.

• We select on the “A-dominant sorting equilibrium” with

the largest mA.

◦ For any (SA, SB), let TA(SA, SB) be the value of mA−
mB in the A-dominant sorting equilibrium.
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Model: Resource distribution game

• Players: A and B

• Strategies: each organization, i = A,B independently

chooses a resource distribution schedule Si ∈ Si.

• Payoffs: for each strategy profile (SA, SB) the payoff to i

is its average type mi in the A-dominant equilibrium.

• Since mA + mB is a constant, the resource distribution

game is strictly competitive.

• A strategy profile (S∗A, S∗B) is a Nash equilibrium of re-

source distribution game if and only if

S∗A ∈ arg max
SA∈SA

min
SB∈SB

TA(SA, SB);

S∗B ∈ arg min
SB∈SB

max
SA∈SA

TA(SA, SB);

max
SA∈SA

min
SB∈SB

TA(SA, SB) = min
SB∈SB

max
SA∈SA

TA(SA, SB).
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Motivation

• Why is the sorting problem interesting to applied economists?

• Understanding coexistence of mixing and segregation in

the distribution of talents among organizations.

◦ At two levels: comparative statics analysis of sorting

equilibrium; “endogenizing” the pecking order effect.

• Providing policy recommendations

◦ Education policy: Texas ten-percent law

• The problem is difficult.

◦ Strategy space is too large.

◦ Sorting equilibrium is difficult to characterize for ar-

bitary pair (SA, SB).
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Solution Method

• First solve the problem

min
SB∈SB

max
SA∈SA

TA(SA, SB).

• Find solution to above problem in two steps:

◦ Fix some SB ∈ SB and a target T of average type dif-

ference mA−mB . Find the minimum budget C(T ; SB)

of resources for A such that T is attained in a sorting

equilibrium.

◦ Then, let B choose SB to maximize the resulting min-

imum budget function C(T ; SB) subject to the budget

constraint for B.

• If for any T ≥ 0 there exists some S∗B that solves the above

two-step problem, then the minmax value of the game is

given by T ∗ such that C(T ∗; S∗B) = YA.

– 10 –



Key Simplifications

• Assume V takes a linear form: V (Ri(θ),mi) = αRi(θ) +

mi, for some positive constant α.

• Assume type distribution is uniform on [0, 1].

• The above assumptions are sufficient to reduce the step of

finding the minimum budget function C(T ; SB) to a linear

programming problem.

◦ For this presentation, I assume YA = YB = Y .
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Preliminary Analysis: Quantile-quantile plot

• To each allocation (HA,HB) we can associate a function

t : [0, 1] → [0, 1] defined as

t(r) ≡ 1−HA (inf{θ : HB(θ) = r}) ∀r ∈ [0, 1].

◦ t(r) is the fraction of agents in organization A of type

higher than rank r’s type in organization B.
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Preliminary Analysis: Quality difference

• Under uniform type distribution, average type difference

mA−mB in any allocation is directly related to an integral

of the function t.

◦ Lemma. Let (HA,HB) be a feasible allocation and t

the associated quantile-quantile plot. Then

mA −mB = −1
2

+
∫ 1

0

t(r) dr.

• For any function t we refer to
∫ 1

0
t(r) dr = T as the “qual-

ity difference.”

◦ Possible quality differences: T ∈ [0, 1].
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Preliminary Analysis: Quality premium

• Under linear payoff function, there is a simple characteri-

zation of sorting equilibrium in terms of quantitle-quantile

plot.

• Given SB(r), a quantile-quantile plot t such that
∫ 1

0
t(r) dr =

T corresponds to a sorting equilibrium for St
A such that

St
A(1− t(r)) = SB(r)− P (T ) for all r ∈ [0, 1].

◦ P (T ) = (T − 1/2)/α is quality premium.
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Minmax Value: Expenditure minimization

• For fixed SB , and each T ≥ 1/2 what is the “cheapest”

SA such that for SB and SA, there is a sorting equilibrium

with quality difference T?

• We can write the minimization problem as

C(T ; SB) ≡ min
t

∫ 1

0

St
A(r) dr s.t.

∫ 1

0

t(r) dr = T.

• By the definition of St
A, C(T ; SB) is given by

min
t:
∫ 1

0
t(r) dr=T

∫ t−1(1)

t−1(0)

t(r)∆′
B(r) dr.

◦ ∆B(r) = max{SB(r)−P (T ), 0} is B’s effective sched-

ule.

• We have a linear programming problem.
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Minmax Value: Expenditure minimization

• Lemma. There is a solution in t(r) to the expenditure

minimization problem that assumes a countable number

of values.

◦ When S′B is decreasing, a constant t(r) reduces ex-

penditure.

◦ When S′B is increasing, a step function t(r) reduces

expenditure.

• Lemma. There exists a solution t(r) to the expenditure

minimization problem that assumes at most one value

strictly between 0 and 1.

◦ Since t is a step function, the objective function is

linear in the value t assumes in between any two dis-

continuity points.
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Minmax Value: Expenditure minimization

• Solution to the expenditure minimization problem can be

explicitly characterized.

• Solution t(r) is fully characterized by discontinuity point(s)

and the resource constraint.

◦ For allocation functions with two discontinuity points,

r1 and r0, we have t(r) = (T − r1)/(r0 − r1) for r ∈
(r1, r0).

◦ For allocation functions with one discontinuity point,

r̂, we have t(r) = T/r̂ for r ≤ r̂.

• C(T ;SB) is given by the minimum of the solution to

min
r≥T

T

r
∆(r)

and the solution to

min
T≥r1≥0; 1≥r0≥T

∆B(r1) +
T − r1

r0 − r1

(
∆(r0)−∆B(r1)

)
.
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Minmax Value: Budget maximization problem

• For each T , consider the problem of B choosing SB to

maximize C(T ; SB)

C(T ) ≡ max
SB

C(T ; SB) s.t
∫ 1

0

SB(r) dr ≤ Y.

• The characterization of the solution the expenditure min-

imization problem implies that the solution SB(r) takes

the form

SB(r) =

{
0 if r < r̃;

P (T ) + β(r − r̃) if r ≥ r̃,

where β is a constant determined by the resource con-

straint and r̃.
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Minmax Value: Budget function

• Lemma. C(1/2) = Y, and limT→1 C(T ) = ∞. Moreover:

◦ if αY > 1/2, then C ′(T ) > 0 for all T ≥ 1/2;

◦ if αY ∈ [1/16, 1/2], then there is a T̂ such that C ′(T ) <

0 for T ∈ (1/2, T̂ ) and C ′(T ) > 0 for T ∈ (T̂ , 1);

◦ if αY < 1/16, then there exist T− and T+ such that

C ′(T ) < 0 for T ∈ (1/2, T−); C ′(T ) > 0 for T ∈
(T+, 1) and C(T ) = 0 for T ∈ [T−, T+].
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Minmax Value: Minmax quality difference

• Let T ∗ be the largest T for which C(T ) = Y.

• T ∗ is a lower bound on the minmax value.

◦ Since C(T ∗) = Y , for any SB there exists an SA

which respects the resource constraint such that given

(SA, SB) there is a sorting equilibrium with quality

difference at least T ∗.

• Let S∗B be the maximizer of C(T ∗; SB).

◦ T ∗ is the minmax value because C(T ; S∗B) > Y for all

T > T ∗.
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Minmax Value: Minmax strategy

• Proposition. Let T ∗ = max{T ∈ [1/2, 1] : C(T ) = Y }.
The minmax problem minSB∈S maxSA∈S TA(SA, SB) ad-

mits a unique solution S∗B , given by

S∗B =

{
0 if r < r∗;

P (T ∗) + β(r − r∗) if r ≥ r∗

where
r∗ = 1− 2

1/(1− T ∗) + P (T ∗)/Y
;

β =
2(Y − P (T ∗)(1− r∗))

(1− r∗)2
.
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Nash Equilibrium: Existence

• To construct a Nash equilibrium we note that there are

many A best responses to S∗B .

• Lemma. Let SA be a resource allocation schedule such

that SA(1) ≤ S∗B(1)− (T ∗ − 1/2)/α and
∫ 1

0
SA(r) dr = Y.

Then SA is a best response to S∗B .

• Proposition. Let r̂ = P (T ∗)/S∗B(1) and S∗A be defined by

S∗A(r) =

{
0 if r < r̂;

(r − r̂)S∗B(1) if r ≥ r̂.

Then, the strategy profile (S∗A, S∗B) is a Nash equilibrium

of the resource distribution game.
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Nash Equilibrium: Resource distributions and sorting structure

• Competition at the top

◦ only high ranks receive positive resources in equilib-

rium;

◦ resources strictly increase with rank above a thresh-

old;

◦ rate of increase is slower in the dominant organization.

• Mixing at the top

◦ top talents are found in both organizations;

◦ top talents are found in larger number in the dominant

organization.
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Nash Equilibrium: Comparative statics

• If the peer effect becomes less important (an increase in α

or Y ):

◦ T ∗ and r∗ both decrease;

◦ B competes on a larger set of ranks;

◦ more mixing at the top;

◦ B’s share of top talents increases;

◦ flatter resource distribution schedules.
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