
Geometry of curves with exceptional

secant planes

15 October 2007



Reference for this talk: arXiv.org/0706.2049

I. Linear series and secant planes

In my thesis, I studied linear series on curves,
and tried to understand their “secant-plane”
behavior in families.

To be concrete: say C ⊂ Ps is a curve. The
family of lines meeting C has expected codi-
mension 1 in G(1,3). So, since G(1,3) is 4-
dimensional, we’d expect C to have finitely
many quadrisecant lines, and no quintisecants.

The Italians computed the expected number
of quadrisecants to be

Q =
1

12
(d−2)(d−3)2(d−4)−

1

2
g(d2−7d+13−g).

Now step back: view C not via its embedding
in P3, but rather as an abstract curve equipped



with a 3-dimensional linear series (L, V ), where

L is a line bundle and V ⊂ H0(C, L) is a sub-

space of the complete series defined by L. Then

p1p2p3p4 is a quadrisecant line

⇔
rk(V

ev−→H0(L/L(−p1 − p2 − p3 − p4))) = 2.

More generally, given any curve C equipped

with a linear series (L, V ), the image of C will

have a d-secant (d − r − 1)-plane spanned by

p1, . . . , pd whenever the evaluation map

V
ev−→ H0(L/L(−p1 − · · · − pd))

has rank (d− r).

Today we’ll study secant-plane behavior of curves

that vary in families, with an eye to study-

ing effective divisors on the moduli space of



curves associated with codimension-1 secant-

plane behavior.

Remarks:

• 2 aspects to the study (qualitative and quan-

titative). Want to compute classes of ef-

fective divisors onMg corresponding to curves

with linear series with secant planes in codi-

mension 1. So need to solve enumerative

problems involving 1-parameter families of

curves. But enumerative calculations only

hold significance provided that on a general

curve, there is no codimension-1 secant-

plane behavior.

• For the toy “quadrisecants” example, enu-

merative significance wasn’t established un-

til 1980’s.



II. Effective divisors on the moduli space

Recall: Mg is a (3g−3)-dimensional projective

variety. It compactifies the space of smooth

curves of genus g, by allowing curves to be-

come slightly singular (stable).

The Picard group of Mg is generated over Q
by classes λ, δ0, . . . , δbg/2c. When g > 2, the

classes are linearly independent, while if g = 2,

“Mumford’s relation”

10λ− δ0 − 2δ1 = 0

holds.

Why should we care about effective divisors on

the moduli space?

Motivation from birational geometry: Given

g ≥ 2, is Mg of general type?



Harris and Mumford showed that for all g suffi-

ciently large, Mg is of general type, which was

a surprise (for low genus, Mg has very special

geometry.)

The Harris–Mumford proof relies on the con-

struction of effective divisors associated to curves

that have linear series with special codimension-

1 behavior.

Improvements due to Eisenbud–Harris involve

studying a different class of effective divisors:

the Brill–Noether (BN) and Petri divisors.

BN curves admit linear series (L, V ) when the

expected dimension of such series is ρ = −1.

Petri curves are those for which the cup-product

V ⊗H0(C, K ⊗ L−1)→ H0(C, K)

fails to be injective.



Up to a positive rational multiple, BN has class

BN = (g + 3)λ−
g + 1

6
δ0 −

bg
2c∑

i=1

i(g − i)δi.

In particular, the ratio of its lambda-coefficient

to its δ0-coefficient equals 6 + 12
g+1.

It turns out that for an effective divisor class

aλ−
bg/2c∑
i=0

biδi,

the single most important invariant (from the

birational p.o.v.) is a/b0, the slope.

Effective divisors of minimal slope sg determine

extremal rays in the effective cone.

Slope conjecture (Harris–Morrison): sg =

6+ 12
g+1, and BN are the only effective divisors

on Mg of minimal slope.



The slope conjecture is false. Farkas–Khosla

produced infinitely many counterexamples at-

tached to curves verifying a codimension-1 syzygy

condition.

Khosla showed that when ρ = 0, one can cal-

culate divisor classes in Pic Gs
m, and push them

down to Pic Mg via explicit formulas. Here Gs
m

is the space of linear series on genus-g curves,

which maps finitely onto Mg when ρ = 0.

III. Secant-plane divisors on Mg

We consider divisors associated to curves with

codimension-1 secant-plane behavior. Assum-

ing ρ = 0 and µ = d− r(s+1−d+ r) = −1, we

compute secant-plane divisor classes in Pic Gs
m,

then push forward to Pic Mg using Khosla’s

formulas.



Divisor classes in Pic Gs
m are determined by

their “values” on 1-parameter families of curves

with linear series.

Consider a 1-parameter family of curves π :

X → B with smooth general fiber, and finitely

many irreducible nodal special fibers.

X comes equipped with

• A line bundle L with degree m on every

fiber

• A rank-(s + 1) vector bundle V = π∗L

X/B → PV∗ is a family of gs
m’s.



How many fibers in the family have d-secant

(d − r − 1)-planes? Want answer in terms of

tautological invariants.

One could try computing the locus of points

in X d
B for which the evaluation map

V ev→ Sd(L)

fibered in

V → H0(L/L(−p1 − · · · − pd))

has rank (d− r).

Difficulties with this approach:

• Not clear that our prescription for d-secant

planes makes sense when pi is a node of a

fiber of X . But Ran ⇒ patch by replacing

fiber product with Hilbert scheme.



Ran ⇒ pushforward of degeneracy locus of

ev to B is expression in

α = π∗(c21(L)), β = π∗(c1(L) · ω), γ = π∗ω2,

c = c1(V), and δ0 = # of singular fibers in π.

• Ran’s approach isn’t computationally prac-

tical (takes place over d copies of X ).

Alternative: use test families to deduce rela-

tions among tautological coefficients.

Test families:

1. Projections of general curve of degree m in

Ps+1 from points along disjoint line l: # of

interesting fibers = # of d-secant (d − r)-

planes to the gs+1
m that intersect l.



2. Projections of general curve of degree (m+
1) in Ps+1 from points along the curve: #
of interesting fibers
= (d + 1) × (# of (d + 1)-secant (d − r)-
planes to a gs+1

m+1).

3. Fix a K3 surface X ⊂ Ps with Picard num-
ber 2 that contains a smooth curve C of
degree m and genus g; take a generic pencil
of curves of class [C] on X.

• Knutsen ⇒ such K3 surfaces exist, and
r = 1 ⇒ none of these surfaces have
d-secant (d− r − 1)-planes.

• If r = s, then none of these surfaces
have d-secant (d−r−1)-planes, by Bézout’s
theorem.

Need 2 more relations. Get 1 more because
formula is stable under renormalizing c1(L) by



factors from B. Choose the renormalization

that trivializes V:

c1(L) 7→ c1(L)−
π∗c1(V)

s + 1
,

c1(V) 7→c1

(
V ⊗O

(
−

c1(V)

s + 1

))
= 0.

If r = 1 or r = s, empirically deduce the missing

apparent relation:

• r = 1:

2(d−1)Pα+(m−3)Pβ = (6−3g)(Pγ +Pδ0)

• r = s:

2(s− 1)Pα + (2m− 3s)Pβ =

(6s− 3m)Pγ − (15m− 30s + 12− 6g)Pδ0.



The case r = 1

When r = 1, we can go further, and deter-

mine (conjecturally) generating functions for

the tautological coefficients P .

First determine a generating function for

Nd(m) =# of d-secant (d− 2)-planes to a general curve

of degree m in P2d−2.

Note that # of interesting fibers in the first

test family = Nd(m),

# of interesting fibers in the second family

= Nd+1(m + 1).

Theorem 2:

∑
d≥0

Ndz
d =

(
2

(1 + 4z)1/2 + 1

)2g−2−m

·(1+4z)
g−1
2 .



Lehn’s work ⇒ such a formula should exist.

Ingredients of proof: Porteous’ formula, com-

binatorics involving subgraphs of the complete

graph on d labeled vertices, the “classical” for-

mula for Nd recorded in [ACGH].

Now let

Zm(z) :=

(
2

(1 + 4z)1/2 + 1

)2g−2−m

·(1+4z)
g−1
2 .

Theorem 2, together with our relations among
tautological coefficients, implies that∑
d≥0

Pc(d, m)zd = −Zm(z),

∑
d≥0

Pα(d, m)zd = Zm(z) ·
[
1

2
−

1

2(1 + 4z)1/2

]
∑
d≥0

Pβ(d, m)zd = Zm(z) ·
[

2z

1 + 4z
−

4z

(1 + 4z)1/2((1 + 4z)1/2 + 1)

]
,



and conjecturally also∑
d≥0

Pγ(d, m)zd = Zm(z) ·
[
z(32z2 − 7(1 + 4z)3/2 + 36z + 7)

6(1 + 4z)5/2((1 + 4z)1/2 + 1)

]
and

∑
d≥0

Pδ0
(d, m)zd = Zm(z) ·

[
z(32z2 − (1 + 4z)3/2 + 12z + 1)

6(1 + 4z)5/2((1 + 4z)1/2 + 1)

]
.

Finally, let

X(z) :=
z(32z2 − 7(1 + 4z)3/2 + 36z + 7)

6(1 + 4z)5/2((1 + 4z)1/2 + 1)
, and

Y (z) :=
z(32z2 − (1 + 4z)3/2 + 12z + 1)

6(1 + 4z)5/2((1 + 4z)1/2 + 1)
.

Reduction: ETS X(z) and Y (z) are expo-

nential generating functions for constant terms

of Pγ(d, m) and Pδ0(d, m), respectively, viewed

(for fixed choices of d) as polynomials in m and

(2g − 2).



Y (z) has Taylor series

1

6
(3z2 − 20z3 + 105z4 − 504z5 + 2310z6 − 10296z7 + . . . );

[zn]Y (z) =
(−1)n−2

6
·
(2n− 1)!

n!(n− 2)!
.

X(z) has Taylor series

1

6
(−3z2 + 28z3 − 177z4 + 960z5 − 4806z6 + 22920z7 − . . . );

[zn]X(z) = (−1)n−1

(
4n−1

n−1∑
i=1

( 2i
i−1

)
4i

−
1

6
·
(2n− 1)!

n!(n− 2)!

)
.

To prove the reduction, ETS X(z) = exponen-
tial generating function for:

S(d) := weighted # of connected (d + 1)-edged subgraphs

of the complete graph on d labeled vertices v1, . . . , vd

where edges have multiplicity ≤ 3, and each
graph G is assigned weight

wG :=
d−1∏
i=2

( indeg(vi)

mj1,i, . . . , mjk,i

)
︸ ︷︷ ︸

multiplicities of edges incident to and pointing towards vi

.



Examples of secant-plane divisors

• r = 1, d = 2, s = 3. In this case, Sec ⊂ G3
m comprises 3-

dimensional linear series with double points. We have

2!Sec = (−6 + 2m)α− 4β + (2g − 2 + 3m−m2)c− γ + δ0.

• r = 1, d = 3, s = 5 (case of 5-dimensional series with
trisecant lines). We have

3!Sec = (3m2 − 27m− 6g + 66)α + (72− 12m)β + (28− 3m)γ

+ (3m− 20)δ0 + (24−m3 + 9m2 + 6mg − 26m− 24g)c.

• r = 1, d = 4, s = 7 (case of 7-dimensional series with 4-
secant 2-planes). We have

4!Sec = (−1008 + 168g − 24mg − 72m2 + 452m + 4m3)α

+ (360m− 1440 + 48g − 24m2)β + (12g − 720 + 130m− 6m2)γ

+ (372g − 360 + 342m− 119m2 −m4 + 18m3 − 12g2 − 132mg

+ 12m2g)c + (6m2 − 98m− 12g + 432)δ0.

• r = 1, d = 5, s = 9 (case of 9-dimensional series with 5-
secant 3-planes). We have

5!Sec = (1020mg − 60m2g − 4500g + 60g2 + 19560 + 5m4

+ 1735m2 − 150m3 − 9270m)α

+ (240mg − 2400g + 33600− 40m3 − 10160m + 1080m2)β

+ (20000 + 60mg − 800g + 370m2 − 10m3 − 4640m)γ

+ (20m3g − 60mg2 − 420m2g + 6720 + 480g2 + 2980mg

− 5944m + 30m4 − 355m3 + 2070m2 −m5 − 7200g)c

+ (60mg + 640g + 10m3 + 2960m− 290m2 − 10720)δ0.



IV. Slope asymptotics

If ρ = 0, µ = −1, and r = 1, then

g = 2ad and m = (a + 1)(2d− 1), a ≥ 2.

Then our virtual slope bλ
b0

satisfies

bλ

b0
−
(
6 +

12

2ad + 1

)
=

3

ad(a + 1)
+ O(d−2)

=
6

(a + 1)g
+ O(g−2).


