
GoBack



. Fields Workshop on New Directions in Cryptography 26/06/2008 – 1 / 41

Extending Scalar Multiplication using Double Bases

Roberto Avanzi Vassil Dimitrov Christophe Doche Francesco Sica

26/06/2008



Talk Outline

Introduction to Elliptic
Curves

Scalar Multiplication
Algorithms

Decomposition
Algorithms

Further results

. Fields Workshop on New Directions in Cryptography 26/06/2008 – 2 / 41

Introduction to Elliptic Curves

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results



Introduction to Elliptic
Curves
• Elliptic Curve
Definition
• Hasse’s Bound
• Group Law
• Koblitz Curves
• Supersingular Koblitz
Curves in char 3
• The Power of
Frobenius
• Fast Triplication
Formulas
• Duplication Formulas
in char 3

Scalar Multiplication
Algorithms

Decomposition
Algorithms

Further results

. Fields Workshop on New Directions in Cryptography 26/06/2008 – 3 / 41

Introduction to Elliptic Curves



Elliptic Curve Definition

Introduction to Elliptic
Curves
• Elliptic Curve
Definition
• Hasse’s Bound
• Group Law
• Koblitz Curves
• Supersingular Koblitz
Curves in char 3
• The Power of
Frobenius
• Fast Triplication
Formulas
• Duplication Formulas
in char 3

Scalar Multiplication
Algorithms

Decomposition
Algorithms

Further results

. Fields Workshop on New Directions in Cryptography 26/06/2008 – 4 / 41

E/Fq is given by an equation of a plane curve:

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, with ai ∈ Fq

The set of solutions (x, y) ∈ Fq × Fq together with the point “at
infinity” O is denoted by E(Fq)

q = 2p binary curve y2 + xy = x3 + a2x
2 + a6

q = 3p ternary curve y2 = x3 + a2x
2 + a4x + a6

q = p ≥ 5 prime curve y2 = x3 + a4x + a6
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The number of Fq-rational points on an elliptic curve E/Fq satisfies

#E(Fq) = q + 1 − t

where
|t| ≤ 2

√
q
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Ea/F2p is a Koblitz curve if

y2 + xy = x3 + ax2 + 1 with a = 0, 1

Choice of a good extension is dictated by the existence of a large
subgroup (of index less than 5 in Ea(F2p)) of prime order,
generated, say, by a point P .
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Eb/F3p is a supersingular ternary Koblitz curve if

y2 = x3 − x + b with b = ±1

Supersingular ternary Koblitz curves have found many applications
to pairing-based cryptosystems (e.g. IBE).
Choice of a good extension is dictated by the existence of a large
subgroup (of index less than 5 in Eb(F3p)) of prime order,
generated, say, by a point P .
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Frobenius map:

τ : Ea(F2p) −→ Ea(F2p)

(x, y)−→ (x2, y2)

Frobenius is very cheap (time is O(1) in normal bases and O(p)
using polynomial reduction).



Fast Triplication Formulas

Introduction to Elliptic
Curves
• Elliptic Curve
Definition
• Hasse’s Bound
• Group Law
• Koblitz Curves
• Supersingular Koblitz
Curves in char 3
• The Power of
Frobenius
• Fast Triplication
Formulas
• Duplication Formulas
in char 3

Scalar Multiplication
Algorithms

Decomposition
Algorithms

Further results

. Fields Workshop on New Directions in Cryptography 26/06/2008 – 10 / 41

On Eb computation of 3P is very fast (equivalent to 2 Frobeniuses)

3 : Eb(F3p) −→ Eb(F3p)

(x, y)−→ (x9 − b,−y9)
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R = 2P .

R =
(

1
y2

P

+ xP ,−xR + x3
P + xP − 2b

yP

)

These operations are costly!
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Costliest part in any EC-based crypto algorithm. Several methods.
All input n and P and output nP .
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Costliest part in any EC-based crypto algorithm. Several methods.
All input n and P and output nP .

• Double and add
• Double and add-subtract (with NAF)
• τ and add-subtract
• Triple and add-subtract
• Double base algorithms

Note that all the single base algorithms have a linear (> c log n)
cost in the number of elliptic curve operations whereas double base
algorithms have a sublinear cost in O(log n/ log log n).
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n = 〈np−1np−2 . . . n0〉2 with ni = 0, 1

1. Q = O

2. for i = p − 1 down to 0

(a) Q = 2Q

(b) if ni *= 0 then Q = Q + P

3. return Q

Average Cost: p doublings and p/2 additions
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Idea: if P = (x, y) then −P = (x,−y)

n = 〈np−1np−2 . . . n0〉2 with ni = 0,±1 and nini+1 = 0

1. Q = O

2. for i = p − 1 down to 0

(a) Q = 2Q

(b) if ni *= 0 then Q = Q + niP

3. return Q

Average Cost: p doublings and p/3 additions
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n = 〈np−1np−2 . . . n0〉τ with ni = 0,±1 and nini+1 = 0

1. Q = O

2. for i = p − 1 down to 0

(a) Q = τ(Q)

(b) if ni *= 0 then Q = Q + niP

3. return Q

Average Cost: p Frobeniuses and p/3 additions
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n = 〈np−1np−2 . . . n0〉3 with ni = 0,±1

1. Q = O

2. for i = p − 1 down to 0

(a) Q = 3Q

(b) if ni *= 0 then Q = Q + niP

3. return Q

Average Cost: p triplings and 2p/3 additions. Note that
p = p log 2/ log 3
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It is a finite expansion of n into a double base {A, B} of the form

n =
∑

s,t

AsBt

We can reorder the exponents s, t in lexicographic order as

n =
I∑

i=1

Asi

Ji∑

j=1

Bti,j , si > si+1 and ti,j > ti,j+1

where the map P +→ BP is fast (Frobenius or triplication on
supersingular ternary curves)
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1. Q ← O

2. For i = 1 to I − 1

3. R ← P

4. For j = 1 to Ji

5. R ← Bti,j−ti,j+1R + P

6. Q ← Q + R

7. Q ← Asi−si+1Q

8. R ← P

9. For j = 1 to JI

10. R ← BtI,j−tI,j+1R + P

11. Q ← Q + R

12. Return Q
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If multiplication by B can be neglected, then total cost is bounded by

c · log n

log log n

elliptic curve operations if the number of addends is less than this

bound and max si = s1 = o

(
log n

log log n

)
.

How can we achieve this bound?
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To find n = 〈np−1np−2 . . . n0〉2 =
p−1∑

i=0

ni2i do

1. ni ← 0, N ← n, i ← p− 1

2. while N > 0

(a) find largest power 2k ≤ N with k ≤ i

(b) nk ← 1

(c) N ← N − 2k

(d) i ← k − 1

3. return 〈np−1np−2 . . . n0〉2
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In this case we find bits from least significant to most significant
(right to left).

1. ni ← 0, N ← n, i ← 0

2. while N > 0

(a) If 2 does not divide N

i. ni ← 1
ii. N ← (N − 1)

(b) N ← N/2

(c) i ← i + 1

3. return 〈np−1np−2 . . . n0〉2
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Greedy algorithms quickly become cumbersome.

1. ni ← 0, N ← n, i ← p− 1, σ ← 1

2. while N > 0

(a) find k ≤ i + 1 with |N − 2k| ≤ 2k−2

(b) nk ← σ

(c) σ ← sign(N − 2k)

(d) N ← |N − 2k|
(e) i ← k − 2

3. return 〈np−1np−2 . . . n0〉2
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1. ni ← 0, N ← n, i ← 0

2. while N > 0

(a) If 2 does not divide N

i. ni ← ±1 where ±1 ≡ N (mod 4)
ii. N ← (N ∓ 1) (opposite sign from above)

(b) N ← N/2

(c) i ← i + 1

3. return 〈np−1np−2 . . . n0〉2
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1. ni ← 0, ζ ← n, i ← 0

2. while N > 0

(a) If τ does not divide ζ

i. ni ← ±1 where ±1 ≡ ζ (mod τ2)
ii. ζ ← (ζ ∓ 1) (opposite sign from above)

(b) ζ ← ζ/τ

(c) i ← i + 1

3. return 〈np−1np−2 . . . n0〉τ
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At first:

• recoding of n given by a greedy algorithm
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• makes use of the continued fraction expansion of log 3/ log 2

and diophantine approximation
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At first:

• recoding of n given by a greedy algorithm
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At first:

• recoding of n given by a greedy algorithm
• no theoretical analysis (decomposition by trial and error)
• makes use of the continued fraction expansion of log 3/ log 2

and diophantine approximation
• produces poor bound on the Hamming weight of the expansion of

n more precisely
• constant c is not optimal (3 for {2, 3}-base, 12 for {3, τ}-base)

when c = 1 is conjectured
• fails in the very interesting case of a double complex base, like

{τ̄ , τ} on Koblitz curves
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• Unsigned binary: use the fact that given n, there exists a power
of 2, say N , such that n/2 < N ≤ n (optimal result). Then use
inductive argument replacing n by n − N to get all the bits of n.
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• Unsigned binary: use the fact that given n, there exists a power
of 2, say N , such that n/2 < N ≤ n (optimal result). Then use
inductive argument replacing n by n − N to get all the bits of n.

• Unsigned {2, 3} number: given n, there exists N = 2u3v with

n

(
1 − 1√

log n

)
< N ≤ n

Use inductive argument to get binumber expansion of length
k = O

(
log n

log log n

)
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1. N ← n

2. While N > 0

3. Until 3 | N , N ← N/3

4. Find 0 ≤ j ≤ 3u−12 with N ≡ 2j (mod 3u)

5. N ← (N − 2j)/3u

6. Return “dibits”



Analysis of Double Base Algebraic Recoding

Introduction to Elliptic
Curves

Scalar Multiplication
Algorithms

Decomposition
Algorithms
• Greedy Binary
• Algebraic Binary
• Greedy NAF
• Algebraic NAF
• Algebraic τ -NAF
• Double Base
Recodings
• Greedy Double Base
Recodings
• Double Base
Algebraic Recoding
• Analysis of Double
Base Algebraic
Recoding
• Complex Double
Bases
• Analysis of Complex
Double Base Recoding
• Replacing τ̄ with
1/2
• Memory
Requirements
• Performance
Comparison

Further results. Fields Workshop on New Directions in Cryptography 26/06/2008 – 30 / 41

At each loop, Step 5 divides N at least by 3u. Therefore at most
log n

u log 3
loops are needed. So a total of at most
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At each loop, Step 5 divides N at least by 3u. Therefore at most
log n

u log 3
loops are needed. So a total of at most

(1 + ε)
log n

log log n

curve operations with u = (1 + ε)−1 log log n

log 3
, as n → ∞.
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At each loop, Step 5 divides N at least by 3u. Therefore at most
log n

u log 3
loops are needed. So a total of at most

(1 + ε)
log n

log log n

curve operations with u = (1 + ε)−1 log log n

log 3
, as n → ∞.

Note that highest power of slow endomorphism (here P +→ 2P ) is
small: s1 = O

(
log1−ε n

)
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1. N ← n (mod
τp − 1
τ − 1

)

2. While |N | ≥ 22u−3 do

3. Until τ | N , N ← N/τ

4. Find 0 ≤ j ≤ 2u−2 and e = 0, 1 with N ≡ (−1)eτ̄ j

(mod τu)

5. N ← (N − (−1)eτ̄ j)/τu

6. Produce the τ -NAF expansion of N

7. Return “dibits”
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At each loop, Step 5 divides N at least by τu. At the end we must
find the τ -NAF expansion of an integer in Z[τ ] of norm less than
22u−2 . Its expected Hamming weight is therefore around 2u−2/3.
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At each loop, Step 5 divides N at least by τu. At the end we must
find the τ -NAF expansion of an integer in Z[τ ] of norm less than
22u−2 . Its expected Hamming weight is therefore around 2u−2/3.
Hence we expect a total of

log n

u log 2
+

2u−2

3
additions and 2u−2 applications of τ̄



Analysis of Complex Double Base Recoding

Introduction to Elliptic
Curves

Scalar Multiplication
Algorithms

Decomposition
Algorithms
• Greedy Binary
• Algebraic Binary
• Greedy NAF
• Algebraic NAF
• Algebraic τ -NAF
• Double Base
Recodings
• Greedy Double Base
Recodings
• Double Base
Algebraic Recoding
• Analysis of Double
Base Algebraic
Recoding
• Complex Double
Bases
• Analysis of Complex
Double Base Recoding
• Replacing τ̄ with
1/2
• Memory
Requirements
• Performance
Comparison

Further results. Fields Workshop on New Directions in Cryptography 26/06/2008 – 32 / 41

At each loop, Step 5 divides N at least by τu. At the end we must
find the τ -NAF expansion of an integer in Z[τ ] of norm less than
22u−2 . Its expected Hamming weight is therefore around 2u−2/3.
Hence we expect a total of

log n

u log 2
+

2u−2

3
additions and 2u−2 applications of τ̄

So a total of at most
(1 + ε)

log n

log log n

curve operations again with u = (1 + ε)−1 log log n

log 2
, as n → ∞.

Note that highest power of slow endomorphism (here P +→ τ̄P ) is
small: s1 = O

(
log1−ε n

)
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Taking advantage of the fact that in char 2 halving is 50% faster than
τ̄ = 1 − τ .
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Taking advantage of the fact that in char 2 halving is 50% faster than
τ̄ = 1 − τ .
Suppose we want to compute ζP , where ζ ∈ Z[τ ]. We let

ζ ′ = 22u−2
ζ (mod

τp − 1
τ − 1

).
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Taking advantage of the fact that in char 2 halving is 50% faster than
τ̄ = 1 − τ .
Suppose we want to compute ζP , where ζ ∈ Z[τ ]. We let

ζ ′ = 22u−2
ζ (mod

τp − 1
τ − 1

). We get

ζP =
k−1∑

i=0

(−1)e′i
τ̄ s′i

22u−2 τ t′iP =
k−1∑

i=0

(−1)e′i
τ t′i−s′i

22u−2−s′i
P

=
k−1∑

i=0

(−1)e′i
τ εip+t′i−s′i

22u−2−s′i
P

where εi = 1 if t′i < s′i and 0 else. We thus get a DB expansion in
base {1/2, τ}.
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This recoding and scalar multiplication needs only
O

(
(log log n)2

)
bits.

Indeed, we only need to store the table giving, for each N
(mod 3u), say, the value 0 ≤ j ≤ 3u−12 such that N ≡ 2j

(mod 3u).
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We compare our new algorithm (in an improved version on Koblitz
curves in char 2) to existing ones without and with precomputation.

Field
size
p

τ -NAF w-τ -
NAF

w DBNS
(1
2
, τ)

u %/τ -
NAF

%/w-
τ -NAF

163 54.33 34.16 5 31.09 5 42.78% 8.99%
233 77.66 45.83 5 41.38 6 46.72% 9.71%
283 94.33 54.16 5 48.80 6 48.27% 9.90%
409 136.33 73.42 6 66.89 6 50.94% 8.90%
571 190.33 102.37 6 88.04 7 53.74% 14.00%

Comparison of scalar multiplication algorithms on Koblitz curves
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Any unsigned {2, 3}-expansion or any {2, 3}-expansion (resp.
{3, τ} or {τ̄ , τ}-expansion) where the exponents of the base
elements are bounded above by C log n (i.e. found by means of a
greedy algorithm) must have length

k ≥ log n

log log n
+ o

(
log n

log log n

)

In particular, one cannot reasonably hope to go below this order of
complexity and c ≥ 1.
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For simplicity assume bases are {2, 3}. Let M = 0C log n1. There
are M2 different numbers 2s3t with s, t ≤ M . Therefore the
number of positive integers less than 2M which can be represented
by at most k {2, 3}-numbers of this form is upper bounded by

k∑

i=1

2i

(
M2

i

)
≤ k 2k

(
M2

k

)
=

Γ(M2 + 1)
Γ(k + 1)Γ(M2 − k)

k 2k

Substituting k = c log n/ log log n and using Stirling’s formula, we
find that the right-hand side is o(2M ) whenever c < 1, therefore the
number of n’s that can be represented in this way is o(2M ) which is
a negligible fraction of 2M .



Double Base Chains

Introduction to Elliptic
Curves

Scalar Multiplication
Algorithms

Decomposition
Algorithms

Further results
• Lower Bounds on a
Double Base Expansion
• Explanation
• Double Base Chains
• Recent work by
others
• Conclusion

. Fields Workshop on New Directions in Cryptography 26/06/2008 – 39 / 41

They are double base expansions

n =
∑

i

AsiBti

where si ≥ si+1 and ti ≥ ti+1.
Advantage: Scalar multiplication with a single loop, can be applied to
all elliptic curves.
Unfortunately, our algorithm does not seem to give double base
chains.
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Miri-Longa, Longa-Gebotys:

• NAF Double base chains using an algebraic method (compared
to the greedy algorithm of Dimitrov-Imbert-Mishra)

• Length better than usual NAF, but not sublinear
• in large bases or w-NAF, need to precompute and store points
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• Double bases provide a new generation of scalar multiplication
implementations on curves with very fast endomorphisms
(Koblitz curves).

• Idea of double bases: use fast multiplication “ad nauseam”. Still
cheap!

• First algebraic (right-to-left) algorithm to write a double base
expansion of a scalar n

• Works also when both bases are complex
• Much faster than previous algorithms, proven optimal length of

log n/log log n
• Extend this theoretical analysis to double base chains: could be

adapted to all elliptic curves (however sublinearity seems hard to
achieve)


