Extending Scalar Multiplication using Double Bases

Roberto Avanzi Vassil Dimitrov Christophe Doche Francesco Sica

26/06/2008

Talk Outline

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

Introduction to Elliptic Curves

Scalar Multiplication Algorithms

Decomposition Algorithms

Introduction to Elliptic

Curves

• Elliptic Curve

Definition

- Hasse's Bound
- **Group Law**
- Koblitz Curves

• Supersingular Koblitz

Curves in char 3

• The Power of

Frobenius

• Fast Triplication

Formulas

• Duplication Formulas in char 3

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

Introduction to Elliptic Curves

. Fields Workshop on New Directions in Cryptography 26/06/2008 – 3 / 41

Elliptic Curve Definition

Introduction to Elliptic

Curves

• Elliptic Curve

Definition

- Hasse's Bound
- Group Law
- Koblitz Curves
- Supersingular Koblitz
- Curves in char 3
- The Power of

Frobenius

• Fast Triplication

Formulas

• Duplication Formulas in char 3

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

 E/\mathbb{F}_q is given by an equation of a plane curve:

$$
y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \text{ with } a_i \in \mathbb{F}_q
$$

The set of solutions $(x, y) \in \mathbb{F}_q \times \mathbb{F}_q$ together with the point "at infinity" $\mathcal O$ is denoted by $E(\mathbb F_q)$

Hasse's Bound

where

Introduction to Elliptic

Curves

• Elliptic Curve

Definition

- Hasse's Bound
- Group Law
- Koblitz Curves
- Supersingular Koblitz

Curves in char 3

• The Power of

Frobenius

• Fast Triplication

Formulas

• Duplication Formulas

in char 3

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

The number of \mathbb{F}_q -rational points on an elliptic curve E/\mathbb{F}_q satisfies $\#E(\mathbb{F}_{n}) = a + 1 - t$

$$
\#L(\mathbb{F}_q) = q + 1 =
$$

$$
|t|\leq 2\sqrt{q}
$$

Introduction to Elliptic

Curves

• Elliptic Curve

Definition

- Hasse's Bound
- **Group Law**
- Koblitz Curves

• Supersingular Koblitz

Curves in char 3

• The Power of

Frobenius

• Fast Triplication

Formulas

• Duplication Formulas

in char 3

Scalar Multiplication Algorithms

Decomposition Algorithms

$$
y^2 = x^3 - x
$$

 $y^2 = x^3 - x$

Introduction to Elliptic

Curves

• Elliptic Curve

Definition

- Hasse's Bound
- **Group Law**
- Koblitz Curves
- Supersingular Koblitz

Curves in char 3

• The Power of

Frobenius

• Fast Triplication

Formulas

• Duplication Formulas

in char 3

Scalar Multiplication Algorithms

Decomposition Algorithms

Introduction to Elliptic

Curves

• Elliptic Curve

Definition

- Hasse's Bound
- **Group Law**
- Koblitz Curves
- Supersingular Koblitz

Curves in char 3

• The Power of

Frobenius

• Fast Triplication

Formulas

• Duplication Formulas in char 3

Scalar Multiplication Algorithms

Decomposition Algorithms

 $y^2 = x^3 - x$

Introduction to Elliptic

Curves

• Elliptic Curve

Definition

- Hasse's Bound
- **Group Law**
- Koblitz Curves

• Supersingular Koblitz

Curves in char 3

• The Power of

Frobenius

• Fast Triplication

Formulas

• Duplication Formulas in char 3

Scalar Multiplication

Algorithms

Decomposition Algorithms

Introduction to Elliptic

Curves

• Elliptic Curve

Definition

- Hasse's Bound
- **Group Law**
- Koblitz Curves

• Supersingular Koblitz

Curves in char 3

• The Power of

Frobenius

• Fast Triplication

Formulas

• Duplication Formulas

in char 3

Scalar Multiplication Algorithms

Decomposition Algorithms

Introduction to Elliptic

Curves

• Elliptic Curve

Definition

- Hasse's Bound
- **Group Law**
- Koblitz Curves

• Supersingular Koblitz

Curves in char 3

• The Power of

Frobenius

• Fast Triplication

Formulas

• Duplication Formulas

in char 3

Scalar Multiplication Algorithms

Decomposition Algorithms

Koblitz Curves

Introduction to Elliptic

Curves

• Elliptic Curve

Definition

- Hasse's Bound
- Group Law
- Koblitz Curves

• Supersingular Koblitz

Curves in char 3

• The Power of

Frobenius

• Fast Triplication

Formulas

• Duplication Formulas in char 3

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

 E_a/\mathbb{F}_{2P} is a Koblitz curve if

$$
y^2 + xy = x^3 + ax^2 + 1 \text{ with } a = 0, 1
$$

Choice of a good extension is dictated by the existence of a large subgroup (of index less than 5 in $E_a(\mathbb{F}_{2P})$) of prime order, generated, say, by a point P .

Supersingular Koblitz Curves in char 3

Introduction to Elliptic

Curves

• Elliptic Curve

Definition

- Hasse's Bound
- Group Law
- Koblitz Curves
- Supersingular Koblitz
- Curves in char 3
- The Power of

Frobenius

- Fast Triplication Formulas
- Duplication Formulas in char 3

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

 E_b/\mathbb{F}_{3^p} is a supersingular ternary Koblitz curve if

$$
y^2 = x^3 - x + b
$$
 with $b = \pm 1$

Supersingular ternary Koblitz curves have found many applications to pairing-based cryptosystems (e.g. IBE). Choice of a good extension is dictated by the existence of a large subgroup (of index less than 5 in $E_b(\mathbb{F}_{3^p})$) of prime order, generated, say, by a point P .

The Power of Frobenius

Frobenius map:

Introduction to Elliptic

Curves

• Elliptic Curve

Definition

- Hasse's Bound
- Group Law
- Koblitz Curves
- Supersingular Koblitz

Curves in char 3

• The Power of

Frobenius

• Fast Triplication

Formulas

• Duplication Formulas in char 3

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

$$
\tau: E_a(\mathbb{F}_{2^p}) \longrightarrow E_a(\mathbb{F}_{2^p})
$$

$$
(x, y) \longmapsto (x^2, y^2)
$$

Frobenius is very cheap (time is $O(1)$ in normal bases and $O(\mathbf{p})$ using polynomial reduction).

Fast Triplication Formulas

Introduction to Elliptic

Curves

• Elliptic Curve

Definition

- Hasse's Bound
- Group Law
- Koblitz Curves
- Supersingular Koblitz

Curves in char 3

• The Power of

Frobenius

• Fast Triplication

Formulas

• Duplication Formulas in char 3

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

On E_b computation of $3P$ is very fast (equivalent to 2 Frobeniuses)

 $3: E_b(\mathbb{F}_{3^p}) \longrightarrow E_b(\mathbb{F}_{3^p})$ $(x, y) \mapsto (x^9 - b, -y^9)$

Duplication Formulas in char 3

 $R = 2P$.

Introduction to Elliptic

Curves

• Elliptic Curve

Definition

- Hasse's Bound
- Group Law
- Koblitz Curves
- Supersingular Koblitz

Curves in char 3

- The Power of
- **Frobenius**
- Fast Triplication

Formulas

• Duplication Formulas in char 3

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

 $R =$ $\begin{pmatrix} 1 \end{pmatrix}$ y_P^2 $+x_P, -\frac{x_R + x_P^3 + x_P - 2b}{y_P}$ y_P "

These operations are costly!

. Fields Workshop on New Directions in Cryptography 26/06/2008 – 11 / 41

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

- Double and add
- Double and

add-subtract (NAF)

 \bullet τ and add-subtract (char 2)

• Triple and

add-subtract

• Double Base

Expansions

• Double Base Scalar Multiplication

• Performance of Double Base Scalar Multiplication

Decomposition Algorithms

Further results

Scalar Multiplication Algorithms

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

• Double and add

• Double and

add-subtract (NAF)

 \bullet τ and add-subtract (char 2)

• Triple and

add-subtract

• Double Base

Expansions

• Double Base Scalar Multiplication

• Performance of Double Base Scalar Multiplication

Decomposition Algorithms

Further results

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

- Double and add
- Double and

add-subtract (NAF)

 \bullet τ and add-subtract (char 2)

• Triple and

add-subtract

• Double Base

Expansions

• Double Base Scalar Multiplication

• Performance of Double Base Scalar Multiplication

Decomposition Algorithms

Further results

Costliest part in any EC-based crypto algorithm. Several methods. All input n and P and output nP .

• Double and add

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

- Double and add
- Double and
- add-subtract (NAF)
- \bullet τ and add-subtract (char 2)
- Triple and
- add-subtract
- Double Base
- **Expansions**
- Double Base Scalar Multiplication
- Performance of Double Base Scalar Multiplication

Decomposition Algorithms

Further results

- Double and add
- Double and add-subtract (with NAF)

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

- Double and add
- Double and
- add-subtract (NAF)
- \bullet τ and add-subtract (char 2)
- Triple and

add-subtract

• Double Base

Expansions

• Double Base Scalar Multiplication

• Performance of Double Base Scalar Multiplication

Decomposition Algorithms

Further results

- Double and add
- Double and add-subtract (with NAF)
- τ and add-subtract

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

- Double and add
- Double and

add-subtract (NAF)

 \bullet τ and add-subtract (char 2)

• Triple and

add-subtract

• Double Base

Expansions

• Double Base Scalar Multiplication

• Performance of Double Base Scalar Multiplication

Decomposition Algorithms

Further results

- Double and add
- Double and add-subtract (with NAF)
- τ and add-subtract
- Triple and add-subtract

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

- Double and add
- Double and
- add-subtract (NAF)
- \bullet τ and add-subtract (char 2)
- Triple and
- add-subtract
- Double Base
- **Expansions**
- Double Base Scalar **Multiplication**
- Performance of Double Base Scalar Multiplication

Decomposition Algorithms

Further results

- Double and add
- Double and add-subtract (with NAF)
- τ and add-subtract
- Triple and add-subtract
- Double base algorithms

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

- Double and add
- Double and
- add-subtract (NAF)
- \bullet τ and add-subtract (char 2)
- Triple and
- add-subtract
- Double Base **Expansions**
- Double Base Scalar **Multiplication**
- Performance of Double Base Scalar **Multiplication**

Decomposition Algorithms

Further results

Costliest part in any EC-based crypto algorithm. Several methods. All input n and P and output nP .

- Double and add
- Double and add-subtract (with NAF)
- τ and add-subtract
- Triple and add-subtract
- Double base algorithms

Note that all the single base algorithms have a *linear* ($\geq c \log n$) cost in the number of elliptic curve operations whereas double base algorithms have a *sublinear* cost in $O(\log n / \log \log n)$.

Double and add

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

• Double and add

• Double and

add-subtract (NAF)

 \bullet τ and add-subtract (char 2)

• Triple and

add-subtract

• Double Base

Expansions

• Double Base Scalar Multiplication

• Performance of Double Base Scalar Multiplication

Decomposition Algorithms

Further results

 $n = \langle n_{\mathbf{p}-1}n_{\mathbf{p}-2} \ldots n_0 \rangle_2$ with $n_i = 0, 1$

1. $Q = \mathcal{O}$

2. for $i = \mathbf{p} - 1$ down to 0

(a) $Q = 2Q$ (b) if $n_i \neq 0$ then $\boldsymbol{Q} = \boldsymbol{Q} + \boldsymbol{P}$

3. return Q

Average Cost: $\bf p$ doublings and $\bf p/2$ additions

Double and add-subtract (NAF)

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

- Double and add
- Double and

add-subtract (NAF)

 \bullet τ and add-subtract (char 2)

• Triple and

add-subtract

• Double Base

Expansions

• Double Base Scalar Multiplication

• Performance of Double Base Scalar Multiplication

```
Decomposition
Algorithms
```
Further results

$$
\text{Idea: if } P = (x, y) \text{ then } -P = (x, -y)
$$

$$
n = \langle n_{\mathbf{p}-1} n_{\mathbf{p}-2} \dots n_0 \rangle_2 \text{ with } n_i = 0, \pm 1 \text{ and } n_i n_{i+1} = 0
$$

1. $Q = \mathcal{O}$

2. for $i = \mathbf{p} - 1$ down to 0

(a) $Q = 2Q$ (b) if $n_i \neq 0$ then $\boldsymbol{Q} = \boldsymbol{Q} + n_i \boldsymbol{P}$

3. return Q

Average Cost: $\bf p$ doublings and $\bf p/3$ additions

τ **and add-subtract (char 2)**

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

- Double and add
- Double and

add-subtract (NAF)

• τ and add-subtract (char 2)

• Triple and

- add-subtract
- Double Base

Expansions

• Double Base Scalar Multiplication

• Performance of Double Base Scalar Multiplication

Decomposition Algorithms

Further results

$$
n = \langle n_{\mathbf{p}-1} n_{\mathbf{p}-2} \dots n_0 \rangle_{\tau}
$$
 with $n_i = 0, \pm 1$ and $n_i n_{i+1} = 0$
1. $Q = Q$

2. for $i = \mathbf{p} - 1$ down to 0

(a) $\boldsymbol{Q} = \tau(\boldsymbol{Q})$ (b) if $n_i \neq 0$ then $\boldsymbol{Q} = \boldsymbol{Q} + n_i \boldsymbol{P}$

3. return Q

Average Cost: p Frobeniuses and $p/3$ additions

Triple and add-subtract

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

- Double and add
- Double and

add-subtract (NAF)

 \bullet τ and add-subtract (char 2)

• Triple and

- add-subtract
- Double Base **Expansions**

• Double Base Scalar Multiplication

• Performance of Double Base Scalar Multiplication

Decomposition Algorithms

Further results

$$
n = \langle n_{p-1}n_{p-2} \dots n_0 \rangle_3 \text{ with } n_i = 0, \pm 1
$$

1. $Q = Q$

2. for $i = p - 1$ down to 0

(a) $Q = 3Q$ (b) if $n_i \neq 0$ then $\boldsymbol{Q} = \boldsymbol{Q} + n_i \boldsymbol{P}$

3. return Q

Average Cost: p triplings and $2p/3$ additions. Note that $p = p \log 2 / \log 3$

Double Base Expansions

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

- Double and add
- Double and
- add-subtract (NAF)
- \bullet τ and add-subtract (char 2)
- Triple and
- add-subtract
- Double Base
- **Expansions**
- Double Base Scalar **Multiplication**

• Performance of Double Base Scalar Multiplication

Decomposition Algorithms

Further results

It is a finite expansion of n into a double base $\{A, B\}$ of the form

$$
n = \sum_{s,t} A^s B^t
$$

We can reorder the exponents s, t in lexicographic order as

$$
n = \sum_{i=1}^{\mathbb{J}} A^{s_i} \sum_{j=1}^{\mathcal{J}_i} B^{t_{i,j}} \enspace , \quad s_i > s_{i+1} \quad \text{and} \quad t_{i,j} > t_{i,j+1}
$$

where the map $P \mapsto BP$ is fast (Frobenius or triplication on supersingular ternary curves)

Double Base Scalar Multiplication

1 to $\mathfrak{I} - 1$ 3. $R \leftarrow F$ $= 1$ to \mathcal{J}_i $\leftarrow B^{t_{i,j}-t_{i,j+1}}R+P$ $\leftarrow Q + R$ $A^{s_i-s_{i+1}}Q$ = 1 to $\mathcal{J}_\mathfrak{I}$ $B^{t_{\mathfrak{I},j}-t_{\mathfrak{I},j+1}}R + P$ $Q + R$ 12. Return Q

Performance of Double Base Scalar Multiplication

Introduction to Elliptic Curves

Scalar Multiplication Algorithms

- Double and add
- Double and

add-subtract (NAF)

 \bullet τ and add-subtract (char 2)

• Triple and

add-subtract

- Double Base **Expansions**
- Double Base Scalar **Multiplication**

• Performance of Double Base Scalar

Multiplication

Decomposition Algorithms

Further results

If multiplication by B can be neglected, then total cost is bounded by

 $c \cdot \frac{\log n}{\log \log n}$ $\log \log n$

elliptic curve operations if the number of addends is less than this bound and $\max s_i = s_1 = o$ $\int \log n$ $\log \log n$ " .

How can we achieve this bound?

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF

• Double Base

Recodings

• Greedy Double Base **Recodings**

• Double Base

Algebraic Recoding

• Analysis of Double

Base Algebraic Recoding

• Complex Double **Bases**

• Analysis of Complex Double Base Recoding

- Replacing $\bar{\tau}$ with 1/2
- Memory

Requirements

• Performance

Comparison

Decomposition Algorithms

Greedy Binary

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

- Algorithms
- Greedy Binary
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

• Greedy Double Base **Recodings**

• Double Base

Algebraic Recoding

• Analysis of Double Base Algebraic

Recoding

• Complex Double **Bases**

• Analysis of Complex Double Base Recoding

• Replacing $\bar{\tau}$ with 1/2

• Memory

Requirements

• Performance

Comparison

To find
$$
n = \langle n_{\mathbf{p}-1} n_{\mathbf{p}-2} \dots n_0 \rangle_2 = \sum_{i=0}^{\mathbf{p}-1} n_i 2^i
$$
 do

$$
1. n_i \leftarrow 0, N \leftarrow n, i \leftarrow p-1
$$

2. while $N > 0$

(a) find largest power $2^k \le N$ with $k \le i$

(b)
$$
n_k \leftarrow 1
$$

$$
\textbf{(c)}\ \ N \leftarrow N-2^k
$$

(d)
$$
i \leftarrow k - 1
$$

3. return $\langle n_{\mathbf{p}-1}n_{\mathbf{p}-2} \ldots n_0 \rangle_2$

Algebraic Binary

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

- Algorithms
- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base
- Algebraic Recoding
- Analysis of Double Base Algebraic

Recoding

• Complex Double Bases

• Analysis of Complex Double Base Recoding

• Replacing $\bar{\tau}$ with 1/2

• Memory

Requirements

• Performance

Comparison

In this case we find bits from least significant to most significant (right to left).

1. $n_i \leftarrow 0, N \leftarrow n, i \leftarrow 0$

2. while $N > 0$

(a) If 2 does not divide N

i. $n_i \leftarrow 1$ ii. $N \leftarrow (N-1)$

(b) $N \leftarrow N/2$ (c) $i \leftarrow i + 1$

3. return $\langle n_{\mathbf{p}-1}n_{\mathbf{p}-2} \ldots n_0 \rangle_2$

Greedy NAF

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

- Algorithms
- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base
- Algebraic Recoding
- Analysis of Double

Base Algebraic Recoding

• Complex Double **Bases**

- Analysis of Complex Double Base Recoding
- Replacing $\bar{\tau}$ with 1/2

• Memory

Requirements

• Performance

Comparison

Greedy algorithms quickly become cumbersome.

1. $n_i \leftarrow 0, N \leftarrow n, i \leftarrow p-1, \sigma \leftarrow 1$

2. while $N > 0$

(a) find $k \leq i + 1$ with $|N - 2^k| \leq 2^{k-2}$

\n- (b)
$$
n_k \leftarrow \sigma
$$
\n- (c) $\sigma \leftarrow \text{sign}(N - 2^k)$
\n- (d) $N \leftarrow |N - 2^k|$
\n- (e) $i \leftarrow k - 2$
\n

3. return
$$
\langle n_{\mathbf{p}-1}n_{\mathbf{p}-2} \ldots n_0 \rangle_2
$$

Algebraic NAF

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF

• Double Base

Recodings

• Greedy Double Base **Recodings**

• Double Base

Algebraic Recoding

• Analysis of Double

Base Algebraic

Recoding

• Complex Double Bases

• Analysis of Complex Double Base Recoding

- Replacing $\bar{\tau}$ with 1/2
- Memory

Requirements

• Performance

Comparison

1. $n_i \leftarrow 0$, $N \leftarrow n$, $i \leftarrow 0$

2. while $N > 0$

(a) If 2 does not divide N i. $n_i \leftarrow \pm 1$ where $\pm 1 \equiv N \pmod{4}$ ii. $N \leftarrow (N \mp 1)$ (opposite sign from above) (b) $N \leftarrow N/2$

(c) $i \leftarrow i + 1$

3. return $\langle n_{\mathbf{p}-1}n_{\mathbf{p}-2} \ldots n_0 \rangle_2$

Algebraic $τ$ -NAF

Introduction to Elliptic Curves

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base
- Algebraic Recoding
- Analysis of Double

Base Algebraic

Recoding

• Complex Double **Bases**

• Analysis of Complex Double Base Recoding

- Replacing $\bar{\tau}$ with 1/2
- Memory

Requirements

• Performance

Comparison

1. $n_i \leftarrow 0, \zeta \leftarrow n, i \leftarrow 0$

2. while $N > 0$

(a) If τ does not divide ζ i. $n_i \leftarrow \pm 1$ where $\pm 1 \equiv \zeta \pmod{\tau^2}$ ii. $\zeta \leftarrow (\zeta \mp 1)$ (opposite sign from above)

(b)
$$
\zeta \leftarrow \zeta/\tau
$$

(c) $i \leftarrow i + 1$

3. return $\langle n_{\mathbf{p}-1}n_{\mathbf{p}-2} \ldots n_0 \rangle_{\tau}$

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base

Algebraic Recoding

• Analysis of Double

Base Algebraic

Recoding

• Complex Double **Bases**

• Analysis of Complex

Double Base Recoding

• Replacing $\bar{\tau}$ with 1/2

• Memory

Requirements

• Performance

Comparison

At first:

• recoding of n given by a greedy algorithm

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base
- Algebraic Recoding
- Analysis of Double

Base Algebraic

Recoding

• Complex Double **Bases**

• Analysis of Complex Double Base Recoding

• Replacing $\bar{\tau}$ with

1/2

• Memory

Requirements

• Performance

Comparison

- recoding of n given by a greedy algorithm
- no theoretical analysis (decomposition by trial and error)

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

- Algorithms
- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base
- **Recodings**
- Greedy Double Base **Recodings**
- Double Base
- Algebraic Recoding
- Analysis of Double

Base Algebraic Recoding

• Complex Double Bases

• Analysis of Complex Double Base Recoding

- Replacing $\bar{\tau}$ with 1/2
- Memory

Requirements

• Performance

Comparison

- recoding of n given by a greedy algorithm
- no theoretical analysis (decomposition by trial and error)
- makes use of the continued fraction expansion of $\log 3/\log 2$ and diophantine approximation

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

• Greedy Double Base **Recodings**

• Double Base

Algebraic Recoding

• Analysis of Double Base Algebraic

Recoding

• Complex Double **Bases**

• Analysis of Complex Double Base Recoding

- Replacing $\bar{\tau}$ with 1/2
- Memory

Requirements

• Performance

Comparison

- recoding of n given by a greedy algorithm
- no theoretical analysis (decomposition by trial and error)
- makes use of the continued fraction expansion of $\log 3/\log 2$ and diophantine approximation
- produces poor bound on the Hamming weight of the expansion of n more precisely

Introduction to Elliptic Curves

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base
- Recodings
- Greedy Double Base **Recodings**
- Double Base
- Algebraic Recoding
- Analysis of Double

Base Algebraic Recoding

• Complex Double **Bases**

• Analysis of Complex Double Base Recoding

- Replacing $\bar{\tau}$ with 1/2
- Memory

Requirements

• Performance

Comparison

- recoding of n given by a greedy algorithm
- no theoretical analysis (decomposition by trial and error)
- makes use of the continued fraction expansion of $\log 3/\log 2$ and diophantine approximation
- produces poor bound on the Hamming weight of the expansion of n more precisely
	- constant c is not optimal (3 for $\{2,3\}$ -base, 12 for $\{3,\tau\}$ -base) when $c = 1$ is conjectured

Introduction to Elliptic Curves

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base
- Recodings
- Greedy Double Base **Recodings**
- Double Base
- Algebraic Recoding
- Analysis of Double Base Algebraic

Recoding

- Complex Double **Bases**
- Analysis of Complex Double Base Recoding
- Replacing $\bar{\tau}$ with 1/2
- Memory

Requirements

• Performance

Comparison

- recoding of n given by a greedy algorithm
- no theoretical analysis (decomposition by trial and error)
- makes use of the continued fraction expansion of $\log 3/\log 2$ and diophantine approximation
- produces poor bound on the Hamming weight of the expansion of n more precisely
- constant c is not optimal (3 for $\{2,3\}$ -base, 12 for $\{3,\tau\}$ -base) when $c=1$ is conjectured
- fails in the very interesting case of a double complex base, like $\{\bar{\tau}, \tau\}$ on Koblitz curves

Greedy Double Base Recodings

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base

Algebraic Recoding

• Analysis of Double

Base Algebraic Recoding

• Complex Double **Bases**

• Analysis of Complex Double Base Recoding

• Replacing $\bar{\tau}$ with

1/2

• Memory

Requirements

• Performance

Comparison

• **Unsigned binary**: use the fact that given n, there exists a power of 2, say N, such that $n/2 < N \leq n$ (optimal result). Then use inductive argument replacing n by $n - N$ to get all the bits of n .

Greedy Double Base Recodings

Introduction to Elliptic Curves

Scalar Multiplication Algorithms

Decomposition

- Algorithms
- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base

Algebraic Recoding

• Analysis of Double

Base Algebraic

Recoding

• Complex Double **Bases**

• Analysis of Complex Double Base Recoding

- Replacing $\bar{\tau}$ with 1/2
- Memory

Requirements

• Performance

Comparison

- **Unsigned binary**: use the fact that given n, there exists a power of 2, say N, such that $n/2 < N \leq n$ (optimal result). Then use inductive argument replacing n by $n - N$ to get all the bits of n.
- **Unsigned** $\{2,3\}$ number: given n, there exists $N = 2^u 3^v$ with

$$
n\left(1 - \frac{1}{\sqrt{\log n}}\right) < N \le n
$$

Use inductive argument to get binumber expansion of length $k = O$ $\int \log n$ $\log \log n$ \bigwedge

Double Base Algebraic Recoding

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF

• Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base

Algebraic Recoding

• Analysis of Double Base Algebraic

Recoding

• Complex Double **Bases**

• Analysis of Complex Double Base Recoding

- Replacing $\bar{\tau}$ with 1/2
- Memory

Requirements

• Performance

Comparison

1. $N \leftarrow n$

2. While $N > 0$

3. Until $3 \mid N, N \leftarrow N/3$

4. Find $0 \le j \le 3^{u-1}2$ with $N \equiv 2^j \pmod{3^u}$

$$
5. \qquad N \leftarrow (N-2^j)/3^u
$$

6. Return "dibits"

Analysis of Double Base Algebraic Recoding

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

- Algorithms
- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base

Algebraic Recoding

• Analysis of Double

Base Algebraic **Recoding**

• Complex Double **Bases**

• Analysis of Complex

Double Base Recoding • Replacing $\bar{\tau}$ with

1/2

• Memory

Requirements

• Performance

Comparison

Analysis of Double Base Algebraic Recoding

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base
- Algebraic Recoding
- Analysis of Double

Base Algebraic

Recoding

• Complex Double **Bases**

• Analysis of Complex Double Base Recoding

• Replacing $\bar{\tau}$ with

1/2

• Memory

Requirements

• Performance

Comparison

At each loop, Step 5 divides N at least by 3^u . Therefore at most $\log n$ $\frac{\log n}{u \log 3}$ loops are needed. So a total of at most

$$
(1+\epsilon)\frac{\log n}{\log\log n}
$$

curve operations with
$$
u = (1 + \epsilon)^{-1} \frac{\log \log n}{\log 3}
$$
, as $n \to \infty$.

Analysis of Double Base Algebraic Recoding

Introduction to Elliptic Curves

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base

Algebraic Recoding

• Analysis of Double Base Algebraic

Recoding

• Complex Double **Bases**

• Analysis of Complex Double Base Recoding

- Replacing $\bar{\tau}$ with 1/2
- Memory

Requirements

• Performance

Comparison

At each loop, Step 5 divides N at least by 3^u . Therefore at most $\log n$ $\frac{10}{u \log 3}$ loops are needed. So a total of at most

$$
(1+\epsilon)\frac{\log n}{\log\log n}
$$

curve operations with $u = (1 + \epsilon)^{-1} \frac{\log \log n}{1 - \epsilon^2}$ $\frac{S^{10}S^{10}}{\log 3}$, as $n \to \infty$. Note that highest power of slow endomorphism (here $P \mapsto 2P$) is small: $s_1 = O\left(\log^{1-\epsilon} n\right)$

Complex Double Bases

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

- Algorithms
- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base

Algebraic Recoding

• Analysis of Double Base Algebraic

Recoding

- Complex Double **Bases**
- Analysis of Complex Double Base Recoding
- Replacing $\bar{\tau}$ with 1/2
- Memory

Requirements

• Performance

Comparison

$$
1. N \leftarrow n \ (\text{mod } \frac{\tau^{\mathbf{p}} - 1}{\tau - 1})
$$

2. While
$$
|N| \ge 2^{2^{u-3}}
$$
 do

3. Until
$$
\tau \mid N, N \leftarrow N/\tau
$$

4. Find $0 \le j \le 2^{u-2}$ and $e = 0, 1$ with $N \equiv (-1)^e \bar{\tau}^j$ $\pmod{\tau^u}$

- 5. $N \leftarrow (N (-1)^{e_{\overline{\tau}}j})/\tau^u$
- 6. Produce the τ -NAF expansion of N
- 7. Return "dibits"

Analysis of Complex Double Base Recoding

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base

Algebraic Recoding

• Analysis of Double

Base Algebraic

Recoding

- Complex Double Bases
- Analysis of Complex
- Double Base Recoding
- Replacing $\bar{\tau}$ with 1/2
- Memory

Requirements

• Performance

Comparison

At each loop, Step 5 divides N at least by τ^u . At the end we must find the τ -NAF expansion of an integer in $\mathbb{Z}[\tau]$ of norm less than $2^{2^{u-2}}$. Its expected Hamming weight is therefore around $2^{u-2}/3$.

Analysis of Complex Double Base Recoding

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

- Algorithms
- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base

Algebraic Recoding

• Analysis of Double

Base Algebraic

Recoding

• Complex Double Bases

• Analysis of Complex

Double Base Recoding

- Replacing $\bar{\tau}$ with 1/2
- Memory

Requirements

• Performance

Comparison

At each loop, Step 5 divides N at least by τ^u . At the end we must find the τ -NAF expansion of an integer in $\mathbb{Z}[\tau]$ of norm less than $2^{2^{u-2}}$. Its expected Hamming weight is therefore around $2^{u-2}/3$. Hence we expect a total of

$$
\frac{\log n}{u \log 2} + \frac{2^{u-2}}{3}
$$
 additions and 2^{u-2} applications of $\bar{\tau}$

Analysis of Complex Double Base Recoding

Introduction to Elliptic Curves

Scalar Multiplication Algorithms

Decomposition

- Algorithms
- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base
- **Recodings**
- Greedy Double Base **Recodings**
- Double Base
- Algebraic Recoding
- Analysis of Double Base Algebraic

Recoding

- Complex Double Bases
- Analysis of Complex Double Base Recoding
- Replacing $\bar{\tau}$ with 1/2
- Memory
- Requirements
- Performance
- **Comparison**

At each loop, Step 5 divides N at least by τ^u . At the end we must find the τ -NAF expansion of an integer in $\mathbb{Z}[\tau]$ of norm less than $2^{2^{u-2}}$. Its expected Hamming weight is therefore around $2^{u-2}/3$. Hence we expect a total of

$$
\frac{\log n}{u \log 2} + \frac{2^{u-2}}{3}
$$
 additions and 2^{u-2} applications of $\bar{\tau}$

So a total of at most

$$
(1+\epsilon)\frac{\log n}{\log\log n}
$$

curve operations again with $u = (1 + \epsilon)^{-1} \frac{\log \log n}{\log n}$ $\frac{S^{10}S^{10}}{\log 2}$, as $n \to \infty$. Note that highest power of slow endomorphism (here $P \mapsto \overline{\tau} P$) is small: $s_1 = O\left(\log^{1-\epsilon} n\right)$

Further results . Fields Workshop on New Directions in Cryptography 26/06/2008 – 32 / 41

Replacing $\bar{\tau}$ with $1/2$

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base

Algebraic Recoding

• Analysis of Double

Base Algebraic **Recoding**

• Complex Double **Bases**

• Analysis of Complex Double Base Recoding

- Replacing $\bar{\tau}$ with 1/2
- Memory

Requirements

• Performance

Comparison

Taking advantage of the fact that in char 2 halving is 50% faster than $\bar{\tau}=1-\tau$.

Replacing $\bar{\tau}$ with $1/2$

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

Algorithms

- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base

Recodings

- Greedy Double Base **Recodings**
- Double Base

Algebraic Recoding

• Analysis of Double

Base Algebraic

Recoding

• Complex Double **Bases**

• Analysis of Complex Double Base Recoding

• Replacing $\bar{\tau}$ with 1/2

• Memory

Requirements

• Performance

Comparison

Taking advantage of the fact that in char 2 halving is 50% faster than $\bar{\tau}=1-\tau$.

Suppose we want to compute ζP , where $\zeta \in \mathbb{Z}[\tau]$. We let

$$
\zeta' = 2^{2^{u-2}} \zeta \pmod{\frac{\tau^{\mathbf{p}}-1}{\tau-1}}.
$$

Replacing $\bar{\tau}$ with $1/2$

Introduction to Elliptic Curves

Scalar Multiplication Algorithms

Decomposition

- Algorithms
- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base
- Recodings
- Greedy Double Base **Recodings**
- Double Base
- Algebraic Recoding
- Analysis of Double Base Algebraic
- Recoding
- Complex Double Bases
- Analysis of Complex Double Base Recoding
- Replacing $\bar{\tau}$ with 1/2
- Memory
- **Requirements**
- Performance
- **Comparison**

Taking advantage of the fact that in char 2 halving is 50% faster than $\bar{\tau}=1-\tau$.

Suppose we want to compute ζP , where $\zeta \in \mathbb{Z}[\tau]$. We let $\zeta' = 2^{2^{u-2}} \zeta \pmod{\frac{\tau^{\mathbf{p}}-1}{\tau^{\mathbf{p}}}$ $\frac{1}{\tau-1}$). We get

$$
\zeta P = \sum_{i=0}^{k-1} (-1)^{e'_i} \frac{\bar{\tau}^{s'_i}}{2^{2^{u-2}}} \tau^{t'_i} P = \sum_{i=0}^{k-1} (-1)^{e'_i} \frac{\tau^{t'_i - s'_i}}{2^{2^{u-2} - s'_i}} P
$$

=
$$
\sum_{i=0}^{k-1} (-1)^{e'_i} \frac{\tau^{\epsilon_i p + t'_i - s'_i}}{2^{2^{u-2} - s'_i}} P
$$

where $\epsilon_i = 1$ if $t'_i < s'_i$ and 0 else. We thus get a DB expansion in base $\{1/2, \tau\}$.

Memory Requirements

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition

Algorithms

• Greedy Binary

• Algebraic Binary

• Greedy NAF

• Algebraic NAF

• Algebraic τ -NAF

• Double Base

Recodings

• Greedy Double Base **Recodings**

• Double Base

Algebraic Recoding

• Analysis of Double

Base Algebraic

Recoding

• Complex Double Bases

• Analysis of Complex

Double Base Recoding • Replacing $\bar{\tau}$ with

1/2

• Memory

Requirements

• Performance

Comparison

This recoding and scalar multiplication needs only $O((\log \log n)^2)$ bits. Indeed, we only need to store the table giving, for each N $(\text{mod }3^u)$, say, the value $0\leq j\leq 3^{u-1}2$ such that $N\equiv 2^j$ $\pmod{3^u}$.

Performance Comparison

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition Algorithms

-
- **Greedy Binary**
- Algebraic Binary
- **Greedy NAF**
- Algebraic NAF
- Algebraic τ -NAF
- Double Base Recodings
- Greedy Double Base **Recodings**
- Double Base

Algebraic Recoding

• Analysis of Double Base Algebraic

Recoding

• Complex Double **Bases**

• Analysis of Complex Double Base Recoding

- Replacing $\bar{\tau}$ with 1/2
- Memory
- **Requirements**
- Performance

Comparison

We compare our new algorithm (in an improved version on Koblitz curves in char 2) to existing ones without and with precomputation.

Comparison of scalar multiplication algorithms on Koblitz curves

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

- Lower Bounds on a Double Base Expansion
- Explanation
- Double Base Chains
- Recent work by

others

• Conclusion

Lower Bounds on a Double Base Expansion

Introduction to Elliptic Curves

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

• Lower Bounds on a Double Base Expansion

- Explanation
- Double Base Chains
- Recent work by

others

• Conclusion

Any unsigned $\{2,3\}$ -expansion or any $\{2,3\}$ -expansion (resp. $\{3,\tau\}$ or $\{\bar{\tau},\tau\}$ -expansion) where the exponents of the base elements are bounded above by $C \log n$ (i.e. found by means of a greedy algorithm) must have length

$$
k \ge \frac{\log n}{\log \log n} + o\left(\frac{\log n}{\log \log n}\right)
$$

In particular, one cannot reasonably hope to go below this order of complexity and $c \geq 1$.

Explanation

Introduction to Elliptic Curves

Scalar Multiplication **Algorithms**

Decomposition Algorithms

Further results

• Lower Bounds on a Double Base Expansion

- Explanation
- Double Base Chains
- Recent work by

others

• Conclusion

For simplicity assume bases are $\{2,3\}$. Let $M = \lceil C \log n \rceil$. There are M^2 different numbers 2^s3^t with $s,t \leq M$. Therefore the number of positive integers less than 2^M which can be represented by at most $k\{2,3\}$ -numbers of this form is upper bounded by

$$
\sum_{i=1}^k 2^i \binom{M^2}{i} \le k 2^k \binom{M^2}{k} = \frac{\Gamma(M^2+1)}{\Gamma(k+1)\Gamma(M^2-k)} k 2^k
$$

Substituting $k = c \log n / \log \log n$ and using Stirling's formula, we find that the right-hand side is $o(2^M)$ whenever $c < 1$, therefore the number of n's that can be represented in this way is $o(2^M)$ which is a negligible fraction of 2^M .

Double Base Chains

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

• Lower Bounds on a Double Base Expansion

- Explanation
- Double Base Chains

• Recent work by

others

• Conclusion

They are double base expansions

$$
n = \sum_{i} A^{s_i} B^{t_i}
$$

where $s_i \geq s_{i+1}$ and $t_i \geq t_{i+1}$.

Advantage: Scalar multiplication with a single loop, can be applied to all elliptic curves.

Unfortunately, our algorithm does not seem to give double base chains.

Recent work by others

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

• Lower Bounds on a

- Double Base Expansion
- Explanation
- Double Base Chains
- Recent work by
- others
- Conclusion

Miri-Longa, Longa-Gebotys:

• NAF Double base chains using an algebraic method (compared to the greedy algorithm of Dimitrov-Imbert-Mishra)

. Fields Workshop on New Directions in Cryptography 26/06/2008 – 40 / 41

Recent work by others

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

- Lower Bounds on a Double Base Expansion
- Explanation
- Double Base Chains
- Recent work by
- others
- Conclusion

Miri-Longa, Longa-Gebotys:

- NAF Double base chains using an algebraic method (compared to the greedy algorithm of Dimitrov-Imbert-Mishra)
	- Length better than usual NAF, but not sublinear

Recent work by others

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition Algorithms

Further results

• Lower Bounds on a Double Base Expansion

• Explanation

- Double Base Chains
- Recent work by

others

• Conclusion

Miri-Longa, Longa-Gebotys:

- NAF Double base chains using an algebraic method (compared to the greedy algorithm of Dimitrov-Imbert-Mishra)
- Length better than usual NAF, but not sublinear
	- in large bases or w -NAF, need to precompute and store points

Conclusion

Introduction to Elliptic **Curves**

Scalar Multiplication Algorithms

Decomposition Algorithms

- Lower Bounds on a Double Base Expansion
- Explanation
- Double Base Chains
- Recent work by
- others
- Conclusion
- Double bases provide a new generation of scalar multiplication implementations on curves with very fast endomorphisms (Koblitz curves).
- Idea of double bases: use fast multiplication "ad nauseam". Still cheap!
- First algebraic (right-to-left) algorithm to write a double base expansion of a scalar n
- Works also when both bases are complex
- Much faster than previous algorithms, proven optimal length of $\log n / \log \log n$
- Extend this theoretical analysis to double base chains: could be adapted to all elliptic curves (however sublinearity seems hard to achieve)