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The Pairings Explosion

• Pairings originally used destructively in MOV/Frey-Rück

attack.

• 2000/2001: Papers by Sakai-Ohgish-Kasahara, Joux and

Boneh-Franklin.

• 2008: Boneh-Franklin now has over 1800 citations on Google

Scholar.

• We provide a “taster” of this work, with the benefit of

hindsight guiding our selection of topics.

– We focus on Identity-Based Encryption (IBE) from pairings

in this talk.

– Next talk covers more recent work on “pairing-free IBE”.

Information Security Group Royal Holloway, University of London
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Overview of this Talk

• Pairings in the abstract

• Early applications: SOK and Joux

• Boneh-Franklin Identity-Based Encryption (IBE)

• Boneh-Lynn-Shacham short signatures

• IBE in the standard model

• Some applications of standard-model-secure IBE to PKE

Information Security Group Royal Holloway, University of London
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1 Pairings in the Abstract

Basic properties:

• Triple of groups G1, G2, GT , all of prime order r.

• A mapping e : G1 ×G2 → GT such that:

– e(P + Q, R) = e(P, R) · e(Q, R)

– e(P, R + S) = e(P, R) · e(P, S)

– Hence

e(aP, bR) = e(P, R)ab = e(bP, aR) = . . .

• Non-degeneracy: e(P, R) 6= 1 for some P ∈ G1, R ∈ G2.

• Computability: e(P, R) can be efficiently computed.

Information Security Group Royal Holloway, University of London
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Pairings in the Abstract

• Typically, G1, G2 are subgroups of the group of r-torsion

points on an elliptic curve E defined over a field Fq.

• Hence additive notation for G1, G2.

• Then GT is a subgroup of F
∗

qk where k is the least integer with

r|qk − 1.

• Hence multiplicative notation for GT .

• k is called the embedding degree.

Information Security Group Royal Holloway, University of London
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Pairings in the Abstract

• A curve E for which a suitable collection 〈e, r, G1, G2, GT 〉

exists is said to be pairing-friendly.

• If E is supersingular, then we can arrange G1 = G2 = G.

• Simplifies presentation of schemes and security analyses.

• Allows “small” representations of group elements in both G1

and G2.

• But then we are limited to k ≤ 6 with consequences for

efficiency at higher security levels.

• Even generation of parameters may become difficult.

Information Security Group Royal Holloway, University of London
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Pairings in the Abstract

• If E is ordinary, then a variety of constructions for

pairing-friendly curves are known.

• Typically G1 ⊂ E(Fq)[r] and G2 ⊂ E(Fqk)[r].

• But then certain trade-offs are involved:

– Only elements of G1 may have short representations.

– It may be difficult to hash onto G2.

– log2 q/ log2 r may be large, so we don’t get full security of

the curve E defined over Fq.

• See e-print 2006/165 for more info.

– http://eprint.iacr.org/2006/165

Information Security Group Royal Holloway, University of London
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2 SOK and Joux

At SCIS2000, Sakai, Ohgishi and Kasahara used pairings to

construct:

• An identity-based signature scheme (IBS); and

• An identity-based non-interactive key distribution scheme

(NIKDS).

The latter has proven to be very influential . . .

Information Security Group Royal Holloway, University of London
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ID-based Public Key Cryptography

• Traditional public-key cryptography: users can generate

public/private key pairs and have them certified by a CA.

• User of public key needs to find key, check certificate chain,

and check revocation list before using key.

• Shamir (1984) introduced ID-based cryptography as a

simplified approach:

– Now Trusted Authority (TA) computes private key as a

function of the user’s system identity and its master secret.

– TA distributes private keys to users over secure channel.

– User of key only needs identity and TA’s system parameters.

Information Security Group Royal Holloway, University of London
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SOK ID-based NIKDS

• Assume we have a pairing e : G×G→ GT and a hash function

H : {0, 1}∗ → G.

• The Trusted Authority (TA) selects s ∈ Zr as its master secret.

• Entity A’s public key is defined to be H(IDA); similarly for B.

• Entity A with identity IDA receives private key sH(IDA) from

the TA; likewise for B.

• A and B can non-interactively compute a shared key via:

e(sH(IDA), H(IDB)) = e(H(IDA), H(IDB))s = e(H(IDA), sH(IDB)).

• A version exists in the more general setting e : G1 ×G2 → GT .

Information Security Group Royal Holloway, University of London
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Security of SOK ID-based NIKDS

Security depends on the hardness of the Bilinear Diffie-Hellman

Problem (BDHP):

Given 〈P, aP, bP, cP 〉 for a, b, c←R Zr, compute e(P, P )abc.

The BDH assumption is that there is no efficient algorithm to

solve the BDH problem with non-negligible probability (as a

function of some security parameter k that controls the size of the

parameters).

Information Security Group Royal Holloway, University of London
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Applications of SOK ID-based NIKDS

• Identity-based key exchange:

– use SOK as a key to a MAC to authenticate a

Diffie-Hellman exchange (Boyd-Mao-Paterson,...)

– use a SOK-variant in an interactive key-exchange (Smart,

Chen-Kudla, many others)

• Secret handshake protocols (Balfanz et al.,...).

• Strong designated verifier signatures (Huang et al.,...).

• etc.

Information Security Group Royal Holloway, University of London
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More on the Bilinear Diffie-Hellman Problem

Given 〈P, aP, bP, cP 〉 for a, b, c←R Zr, compute e(P, P )abc.

• BDHP is not harder than CDH problem in G, GT .

• The pairing makes DDH easy in G:

— P, aP, bP, cP is a DH quadruple iff

e(aP, bP ) = e(P, cP ).

• A variant of BDHP exists for the setting e : G1 ×G2 → GT .

• A zoo of other computational and decisional problems have

been defined for the purposes of proving secure certain

pairing-based schemes.

Information Security Group Royal Holloway, University of London
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Joux’s Protocol

Joux (ANTS 2000, JoC 2004):

• Fix generator P ∈ G, with e : G×G→ GT .

• Parties A, B and C respectively choose random a, b, c ∈ Zr.

• A broadcasts aP .

• B broadcasts bP .

• C broadcasts cP .

• All three parties can now compute shared secret:

e(P, P )abc = e(aP, bP )c = e(aP, cP )b = e(cP, bP )a

Information Security Group Royal Holloway, University of London
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Joux’s Protocol

• Since all messages can be sent simultaneously this protocol can

be completed in one round.

• This is in contrast to all previous key exchange protocols for 3

parties.

• Security against passive adversary based on hardness of BDHP.

• But not secure against active adversaries.

• To make an authenticated 3-party protocol, add signatures or

adapt MQV/MTI protocols.

• Basis for several proposals for efficient multi-party protocols.

Information Security Group Royal Holloway, University of London
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3 Boneh-Franklin IBE

• Boneh and Franklin (Crypto 2001) gave the first efficient

ID-based encryption scheme with security model and proof.

– Shamir (Crypto’84) proposed IBE concept but no IBE

scheme.

– SOK scheme (SCIS 2001) is roughly the same scheme, but

without security model or proof.

– Cocks’ scheme (IMA C&C 2001) has long ciphertexts.

– Maurer-Yacobi scheme (Eurocrypt’91) is inefficient and

insecure as presented.

• Basic version provides CPA security, enhanced version gives

CCA security.

• Boneh-Franklin paper was the main trigger for the flood of

research in pairing-based cryptography.

Information Security Group Royal Holloway, University of London



Fields Institute Workshop on New Directions in Cryptography 17

Boneh-Franklin IBE

Setup:

1. On input a security parameter k, generate parameters

〈G, GT , e, r〉 where e : G×G→ GT is a pairing on groups of

prime order r.

2. Select two hash functions H1 : {0, 1}∗ → G, H2 : GT → {0, 1}
n,

where n is the length of plaintexts.

3. Choose an arbitrary generator P ∈ G.

4. Select a master secret s uniformly at random from Z∗

r and set

P0 = sP .

5. Return the public system parameters

params = 〈G, GT , e, r, P, P0, H1, H2〉

and the master secret s.

Information Security Group Royal Holloway, University of London
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Boneh-Franklin IBE

Extract: Given an identity ID ∈ {0, 1}∗, set dID = sH1(ID) as the

private key – identical to private key extraction of SOK.

Encrypt: Inputs are message M and an identity ID.

1. Choose random t ∈ Zr.

2. Compute the ciphertext C = 〈tP, M ⊕H2(e(H1(ID), P0)
t)〉.

Decrypt: Given a ciphertext 〈U, V 〉 and a private key dID, compute:

M = V ⊕H2(e(dID, U)).

Information Security Group Royal Holloway, University of London
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Boneh-Franklin IBE – What Makes it Tick?

• Both sender (who has t) and receiver (who has dID) can

compute e(H1(ID), P )st:

e(H1(ID), P )st = e(H1(ID), sP )t = e(H1(ID), P0)
t

e(H1(ID), P )st = e(sH1(ID), tP ) = e(dID, U)

• This value is hashed to create a one-time pad to hide M .

Information Security Group Royal Holloway, University of London
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Boneh-Franklin IBE – What Makes it Tick?

• Alternatively: the scheme encrypts with a mask obtained by

hashing the SOK key shared between identities with public

keys H1(ID) and tP .

– Here, the sender uses the “reference key-pair” P, P0 to

create a fresh key-pair tP, tP0 for each message.

– SOK key is then e(H1(ID), tP )s.

– So Boneh-Franklin IBE can be obtained by making a simple

modification to the SOK ID-based NIKDS.

– More generally, we can convert (almost) any ID-based

NIKDS scheme to an IBE scheme.

Information Security Group Royal Holloway, University of London
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Security of Boneh-Franklin IBE

Informally:

• Adversary sees message XORed with hash of e(H1(ID), P0)
t.

• Adversary also sees P0 = sP and U = tP .

• Write H1(ID) = zP for some (unknown) z.

• Then e(H1(ID), P0)
t= e(P, P )stz.

• Because H2 is modeled as a random oracle, adversary must

query H2 at e(P, P )stz to find M .

• Adversary has inputs sP , tP , zP .

• So this is an instance of the BDH problem.

Information Security Group Royal Holloway, University of London
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Formal Security Model for IBE – I

Similar game to standard security game for public key encryption:

• Challenger C runs Setup and adversary A is given the public

parameters.

• A accesses Extract and Decrypt oracles.

• A outputs two messages m0, m1 and a challenge identity ID∗.

• C selects random bit b and gives A an encryption of mb under

identity ID∗, denoted c∗.

• A makes further oracle access and finally outputs a guess b′ for

b.

A wins the game if b′ = b. Define

Adv(A) = 2|Pr [b′ = b]− 1/2|.

Information Security Group Royal Holloway, University of London
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Formal Security Model for IBE – II

Natural limitations on oracle access and selection of ID∗:

• No Extract query on ID∗.

• No Decrypt query on c∗, ID∗.

An IBE scheme is said to be IND-ID-CCA secure if there is no

poly-time adversary A which wins the above game with

non-negligible advantage.

An IBE scheme is said to be IND-ID-CPA secure if there is no

poly-time adversary A having access only to the Extract oracle

which wins the above game with non-negligible advantage.

Information Security Group Royal Holloway, University of London
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Security of Boneh-Franklin IBE

• Boneh and Franklin prove that their encryption scheme is

IND-ID-CPA secure, provided the BDH assumption holds.

• The proof is in the random oracle model.

• “Standard” techniques can be used to transform

Boneh-Franklin IBE into an IND-ID-CCA secure scheme.

– Adaptation of Fujisaki-Okamoto conversion.

– But these generally add complexity, require random oracles,

and result in inefficient security reductions.

Information Security Group Royal Holloway, University of London
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ID-based Signatures Related to Boneh-Franklin

• Several authors quickly showed how to derive ID-based

signature schemes using the SOK/BF keying infrastructure

(already in SOK, Paterson, Hess, Cha-Cheon, Yi, etc).

• But ID-based signatures can be constructed generically from

ordinary signatures (folklore?).

• And non-pairing-based constructions were also already known

(from Shamir84 onwards).

• Aim was to build a suite of identity-based crypto-primitives

re-using same computational primitives.

Information Security Group Royal Holloway, University of London
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4 Boneh-Lynn-Shacham Short

Signatures

An observation of Naor: any IND-ID-CPA secure IBE scheme can

be transformed into a (normal) signature scheme that is secure in

the sense of EUF-CMA.

Setup: Run Setup algorithm of IBE scheme, set:

public key = public parameters, private key = master secret.

Sign: To sign a message m, treat m as an identity string and

output σ = dm, the private key corresponding to m.

Verify: Encrypt a random message with identity m and try to

decrypt using σ = dm.

Information Security Group Royal Holloway, University of London
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Boneh-Lynn-Shacham Short Signatures

Boneh-Lynn-Shacham (2001) applied Naor’s idea to the

Boneh-Franklin scheme and optimised the verification algorithm:

Setup: Generate public key 〈G, GT , e, r, P, P0 = sP, H1〉 and private

key s.

Sign: To sign a message m, output σ = sH1(m) ∈ G.

Verify: Check

e(H1(m), P0)
?
= e(σ, P ).

Note that P, P0, H1(m), σ is a DH quadruple when σ is a valid

signature. Verification checks this relationship.

Security of BLS signatures based on hardness of CDH in G, a

group in which DDH is easy.

Information Security Group Royal Holloway, University of London
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Boneh-Lynn-Shacham Short Signatures

• Aim to minimise signature size: one element of G.

• For G a subgroup of E(Fq), this is about log2 q bits.

• CDH in G only as hard as DLP in GT , a subgroup of Fqk . So

try to maximise k.

• But k ≤ 6 in the supersingular setting. And for k = 6, Fq must

have characteristic 3.

• For q ≈ 2170, |Fq6 | ≈ 21024.

• But special low characteristic algorithms for DLP apply,

substantially reducing security compared to 1024-bit RSA (for

80 bits of security).

• Need to compensate with larger q.

• So short signatures are not as short as we’d like them to be.

Information Security Group Royal Holloway, University of London
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Boneh-Lynn-Shacham Short Signatures

• So this is an instance where working in the simplified setting

with e : G×G→ GT is limiting.

• Solution is to work with pairings e : G1 ×G2 → GT .

• Enables use of ordinary curves with k = 6 and q a prime field.

• Or even larger k at higher security levels (e.g. k = 12 with

q ≈ 2256 at 128-bit security level using BN curves).

• Can arrange σ ∈ G1 and sP ∈ G2.

• Allows short signatures (at the cost of large public keys).

Information Security Group Royal Holloway, University of London
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Extensions of BLS Signatures

The algebraic simplicity of BLS signatures allows easy construction

of signatures with additional properties.

Example: BGLS aggregate signatures

• n BLS signatures σi ∈ G1 on n distinct messages mi for parties

with public keys siP ∈ G2.

• Aggregation by any party to form a single signature

σ =
∑

i

σi ∈ G1

• Verification via:

e(σ, P )
?
=

n∏

i=1

e(H1(mi), siP ).

Information Security Group Royal Holloway, University of London
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Further Extensions of BLS Signatures

• Ring signatures, Verifiably encrypted signatures

(Boneh-Gentry-Lynn-Shacham, Eurocrypt 2003)

• Multisignatures, Blind signatures, Threshold signatures (Boldyreva,

PKC 2003)

• Universal designated verifier signatures

(Steinfeld-Bull-Pieprzyk-Wang, Asiacrypt 2003)

• . . .

Information Security Group Royal Holloway, University of London
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Hierarchical IBE

• Extension of IBE to provide hierarchy of TAs, each generating

private keys for TAs in level below.

• Encryption needs only root TA’s parameters and list of

identities.

• First secure, multi-level scheme due to Gentry and Silverberg

(Asiacrypt 2002).

• Also an important theoretical tool:

– Efficient constructions for forward secure encryption.

– Generation of IND-ID-CCA secure (H)IBE from

IND-ID-CPA secure HIBE.

– Intrusion-resilient cryptography.

Information Security Group Royal Holloway, University of London
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5 IBE in the Standard Model

• Prior to circa 2004, most applications of pairings to construct

cryptographic schemes involved use of the Random Oracle

Model (ROM).

• ROM provides a powerful and convenient tool for modeling

hash functions in security proofs.

• Question marks over extent to which ROM accurately models

the behavior of hash functions.

• Several examples in the literature of schemes secure in the

ROM but insecure for every family of hash functions.

– e.g. Canetti-Halevi-Katz (STOC 1998).

• General trend towards “proofs in the standard model” in

cryptography.

Information Security Group Royal Holloway, University of London
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CHK, BB, and Waters

IBE in the standard model:

• Eurocrypt 2003: Canetti-Halevi-Katz provide Selective-ID

secure IBE scheme.

— Fairly inefficient and weak adversary model.

• Eurocrypt 2004: Boneh-Boyen present two efficient

Selective-ID secure (H)IBE schemes – security based on

hardness of BDHP and BDH Inversion problem.

• Crypto 2004: Boneh-Boyen present inefficient, but

IND-ID-CPA secure IBE scheme.

• Eurocrypt 2005: Waters presents efficient, IND-ID-CPA secure

IBE by “tweaking” Boneh-Boyen construction from Eurocrypt

2004.

Information Security Group Royal Holloway, University of London
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A Notational Switch

• Boneh-Boyen initiated a switch of notation which has remained

popular in recent papers.

• Henceforth in this talk all groups are written multiplicatively

and g denotes a generator of G.

• And we have e(ga, gb) = e(g, g)ab = e(gb, ga) etc.

Information Security Group Royal Holloway, University of London
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Waters’ IBE Scheme

Setup:

1. On input a security parameter k, generate parameters

〈G, GT , e, r〉 where e : G×G→ GT is a pairing on groups of

prime order r.

2. Select u′, u0, . . . , un−1 ←R G
n+1. Here n is the length of

(hashed) identities.

3. Choose an arbitrary generator g ∈ G and s←R Zr. Set

g1 = gs, g2 ←R G.

4. The master secret is gs
2.

5. Output params = 〈G, GT , e, r, g, g1, g2, u
′, u0, . . . , un−1〉.

Information Security Group Royal Holloway, University of London
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Waters’ IBE Scheme

The Waters Hash: Given an n-bit string b = b0b1 . . . bn−1, define

HW (b) = u′ub0
0 · · ·u

bn−1

n−1 = u′

∏

bi=1

ui.

Extract: Given an identity ID ∈ {0, 1}∗, select t←R Zr and set

dID = 〈gs
2 ·HW (ID)t, gt〉 ∈ G

2

– Randomised private key extraction.

Information Security Group Royal Holloway, University of London
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Waters’ IBE Scheme

Encrypt: Inputs are a message m ∈ GT and an identity ID.

1. Choose random z ∈ Zr.

2. Compute the ciphertext

c = 〈m · e(g1, g2)
z, gz, HW (ID)z〉 ∈ GT ×G

2.

Decrypt: Given a ciphertext c = 〈c1, c2, c3〉 and a private key

dID = 〈d1, d2〉, compute:

m = c1 ·
e(d2, c3)

e(d1, c2)
.

Information Security Group Royal Holloway, University of London
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Correctness of Waters’ IBE Scheme

The Waters scheme is correct:

e(d2, c3) = e(gt, HW (ID)z) = e(g, HW (ID))tz

and

e(d1, c2) = e(gs
2HW (ID)t, gz)

= e(gs
2, g

z) · e(HW (ID)t, gz)

= e(g2, g)sz · e(g, HW (ID))tz.

Hence
e(d2, c3)

e(d1, c2)
= e(g2, g)−sz = e(g1, g2)

−z

so

c1 ·
e(d2, c3)

e(d1, c2)
= m · e(g1, g2)

z · e(g1, g2)
−z = m.

Information Security Group Royal Holloway, University of London
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Efficiency of Waters’ IBE Scheme

• Large public parameters: dominated by n + 1 random group

elements.

– Could generate these pseudo-randomly.

• Small private keys (2 group elements) and ciphertexts (3 group

elements).

• Encryption: on average n/2 + 1 group operations in G, two

exponentiations in G, one exponentiation in G1 (assuming

e(g1, g2) is pre-computed.

• Decryption: dominated by cost of two pairing computations.

• Size of public parameters can be reduced at the cost of a looser

security reduction using ideas of Chatterjee-Sarker and

Naccache.

Information Security Group Royal Holloway, University of London
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Security for Waters’ IBE Scheme

Waters showed that his scheme is IND-ID-CPA secure assuming

the hardness of the decisional BDHP:

Given 〈g, ga, gb, gc, Z〉 for a, b, c←R Zr, and Z ∈ GT ,

decide if Z = e(g, g)abc.

c.f. Proof of security for Boneh-Franklin IBE based on hardness of

BDHP in the Random Oracle Model.

Information Security Group Royal Holloway, University of London
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Sketch of Security Proof

• Assume A is an adversary against Waters’ IBE, and B is faced

with an instance of DBDHP on input 〈g, ga, gb, gc, Z〉.

• B simulates a challenger in A’s security game.

• B sets g1 = ga, g2 = gb and will put gz = gc in the generation

of the challenge ciphertext c∗.

• B will also use Z in place of e(g1, g2)
z when creating c∗1 from

mb.

• If Z = e(g, g)abc then the challenge ciphertext will be a correct

encryption of mb. If Z 6= e(g, g)abc then the challenge

ciphertext will be unrelated to mb.

• From this, B can convert a successful A into an algorithm for

solving DBDHP.

Information Security Group Royal Holloway, University of London
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Sketch of Security Proof (ctd.)

What about private key extraction queries? Essential idea:

• B sets u′ = g2
−δ+x′

gy′

and ui = g2
xigyi for small x′, xi,

y′, yi ←R Zr, and a certain small value δ.

• Then u′, ui are identically distributed as in A’s game with C.

• We have

HW (ID) = g
F (ID)
2 gJ(ID)

where

F (ID) = −δ + x′ +
∑

IDi=1

xi, J(ID) = y′ +
∑

IDi=1

yi,

Note that F is relatively small in absolute value.

Information Security Group Royal Holloway, University of London
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Sketch of Security Proof (ctd.)

Provided F (ID) 6= 0 mod r, we can now construct a private key

〈d1, d2〉 for ID via:

d1 = g1
−

J(ID)
F (ID) ·HW (ID)t, d2 = g1

−
1

F (ID) · gt.

– an exercise to check this is valid and properly distributed private

key.

Information Security Group Royal Holloway, University of London
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Sketch of Security Proof (ctd.)

Challenge ciphertext should be an encryption of mb:

c1 = mb · e(g1, g2)
z c2 = gz c3 = HW (ID∗)z

↓ ↓ ↓

c1 = mb · Z c2 = gc c3 = HW (ID∗)c

Problem: how to compute c3 in this simulation when we don’t

know c but only gc?

Solution: suppose F (ID∗) = 0 mod r. Then:

HW (ID∗) = g
F (ID)∗

2 gJ(ID)∗ = gJ(ID)∗

and so

HW (ID∗)c = (gc)J(ID)∗

Information Security Group Royal Holloway, University of London
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Sketch of Security Proof (concluded)

• So we need F (ID) 6= 0 mod r to extract private keys and

F (ID∗) = 0 mod r to construct the challenge ciphertext.

• These conditions dictate the probability that B’s simulation

works.

• Technical glitch involving possibility of A’s success event being

correlated with B’s failure.

• Problem solved using “artificial aborts”.

Information Security Group Royal Holloway, University of London
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6 Applications of Standard Model IBE

• Canetti-Halevi-Katz (Eurocrypt 2004) showed how to build an

IND-CCA secure PKE scheme from any IND-ID-CPA secure

IBE scheme.

• Selective-ID security sufficient for this application.

• Techniques later improved by Boneh-Katz (RSA-CT 2005).

• Can be applied to the two selective-ID secure IBE schemes of

Boneh-Boyen (don’t need full security of Waters’ IBE).

• Provides a new method for constructing IND-CCA secure PKE

in the standard model.
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The CHK construction: PKE from IBE

Setup: Public key of PKE set to params of IBE; private key is set

to the master secret.

Encrypt:

• Generate a key-pair 〈vk, sk〉 for a strong one-time signature

scheme;

• IBE-encrypt m using as the identity the verification key vk to

obtain c;

• Sign c using signature key sk to obtain σ;

• Output 〈vk, c, σ〉 as the encryption of m.
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The CHK construction: PKE from IBE

Decrypt:

• Check that σ is a valid signature on c given vk;

• Use the master secret to generate the IBE private key for

identity vk;

• Use this key to IBE-decrypt c to obtain m.
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Security of the CHK construction

Informally: a decryption oracle is of no use to an attacker faced

with 〈vk∗, c∗, σ∗〉 :

• If oracle queried on 〈vk, c, σ〉 with vk = vk∗, then σ will be

incorrect (unforgeability).

• If query with vk 6= vk∗, then IBE decryption will be done with

a different “identity” so result won’t help (IBE security).
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The BMW Construction: PKE from Waters’ IBE

Scheme

Boyen-Mei-Waters (ACM-CCS 2005) used a direct approach to

produce an efficient PKE scheme from Waters’ IBE (and from

Boneh-Boyen).

Key generation:

• Public key:

〈G, GT , e, r, g, g1, g2, s
′, u′ = gy′

, u0 = gy0 , . . . , un−1 = gyn−1〉

with s′ a key for a collision-resistant hash family

Hs′ : GT ×G→ {0, 1}n and y′, y0, . . . , yn−1 ←R Zr.

• Private key:

〈gs
2, y

′, y0, . . . , yn−1〉
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The BMW Construction

Encrypt: Given a message m ∈ GT ,

1. Choose random z ∈ Zr.

2. Compute the ciphertext

c = 〈c1, c2, c3〉 = 〈m · e(g1, g2)
z, gz, HW (w)z〉 ∈ GT ×G

2

where

w = Hs′(c1, c2).

Information Security Group Royal Holloway, University of London



Fields Institute Workshop on New Directions in Cryptography 53

The BMW Construction

Decrypt: Given a ciphertext c = 〈c1, c2, c3〉 and the private key:

1. Compute w = Hs′(c1, c2);

2. Test if 〈g, c2, HW (w), c3〉 is a DH quadruple by using the

pairing (or more efficiently using knowledge of the values y′, yi).

3. Calculate

m = c1/e(c2, g
s
2).
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The BMW Construction

• Scheme is similar to Waters’ IBE, but with “identity” in c3

being computed from components c1, c2.

• Scheme is more efficient than CHK/BK approach – no external

one-time signature/MAC involved.

• Security can be related to security of Waters’ IBE, so rests on

hardness of DBDHP.

• Security proof needs full security model for IBE (selective-ID

security not enough).

• A specific rather than a generic transform from IBE to PKE

(c.f. CHK approach).
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A Hierarchical Version of Waters’ IBE Scheme

• A simple generalisation of Waters’ IBE yields a HIBE scheme

that is IND-ID-CPA secure assuming DBDHP is hard.

• IND-ID-CCA security for ℓ-level HIBE can be attained by

applying CHK/BK/BMW ideas to the (ℓ + 1)-level

IND-ID-CPA secure scheme.

• ℓ = 2 case gives IND-ID-CCA secure IBE.

• Size of public parameters grows linearly with ℓ.

• Quality of the security reduction declines exponentially with ℓ.

– Alternative approaches due to Kiltz-Galindo/Kiltz have

tighter reductions.

– Gentry’s scheme (Eurocrypt 2006) has a tight reduction,

but a less natural hardness assumption.
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Signatures from Waters’ IBE

Using Naor’s observation, we can create a signature scheme from

Waters’ IBE:

Setup: Generate public key 〈G, GT , e, r, g, g1, g2, u
′, u0, . . . , un−1〉

and private key gs
2 as in Waters’ IBE.

Sign: To sign a message m, select t←R Zr and output

σ = 〈gs
2 ·HW (m)t, gt〉 ∈ G

2.

Verify: Given σ = 〈σ1, σ2〉, check

e(σ1, g)/e(σ2, HW (m))
?
= e(g1, g2).
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Signatures from Waters’ IBE

• Signature scheme is secure in the standard model, assuming

only the hardness of CDH in G.

• Signature consists of 2 elements of G, so is relatively compact

(but similar length issues as to BLS signatures).

• Signature generation is pairing-free (two exponentiations).

• Verification requires two pairings (assuming Z = e(g1, g2) is

placed in public key).

• Scheme is attractive in comparison to other standard model

secure signature schemes.
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Other Signature Schemes from Waters’ IBE

• Boneh-Shen-Waters (PKC 2006): Strongly unforgeable

signatures based on CDH by modifying Waters’ scheme.

• Adversary can win by forging new signature given existing

m, σ pair.

• Useful primitive in group signature schemes, CCA-secure

encryption schemes, etc.

• Lu et al. (Eurocrypt 2006): Sequential aggregate signatures,

multisignatures and verifiably encrypted signatures from

Waters’ scheme.
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Further extensions of Waters signatures

• Ring signatures (Shacham-Waters, PKC 2007)

• Blind signatures (Okamoto, TCC 2006)

• Group signatures (Boyen-Waters, Eurocrypt 2006 and PKC 2007)

• Identity-based signatures (Paterson-Schuldt, ACISP 2006)

• Universal designated verifier signatures

(Laguillaumie-Libert-Quisquater, SCN 2006)

• Forward-secure (Boyen-Shacham-Shen-Waters, ACM-CCS’06) and

intrusion-resilient (Libert-Quisquater-Yung, Inscrypt 2006)

signatures

• . . ..

Information Security Group Royal Holloway, University of London



Fields Institute Workshop on New Directions in Cryptography 60

Conclusions

• Pairing-based cryptography has seen very rapid development.

• IBE as one exciting application.

• But theoretical applications far beyond IBE.

• Recent focus on removing reliance on random oracle model –

sometimes at the expense of relying on less natural hardness

assumptions.

• Even more recent focus on removing reliance on pairings –

more to come in next talk.
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