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Overview of this Talk

The main focus in this talk is on pairing-free IBE:

• Motivation

• Cocks’ IBE scheme: IBE in the RSA setting

• Boneh-Gentry-Hamburg IBE scheme

• IBE from trapdoor discrete logarithm groups

• IBE from lattice problems

Information Security Group Royal Holloway, University of London
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1 Motivation for Pairing-free IBE

• Pairing-based IBE has seen rapid development.

• But security is based on relatively untested computational

problems.

• And implementation can be complex – many choices of

parameters, families of curves, implementation tricks.

• Efficiency considerations.

• Also of great theoretical interest to find alternative

constructions.

Information Security Group Royal Holloway, University of London
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2 Cocks’ IBE Scheme

• Cocks’s IBE scheme was proposed shortly after Boneh-Franklin

IBE.

• 4 page paper published at IMA Coding and Cryptography

Conference, December 2001.

• In fact, scheme was devised in late 1990’s.

• Publication of Boneh-Franklin scheme allowed it to be released

into the public domain.

Information Security Group Royal Holloway, University of London
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Cocks’ IBE Scheme

Setup:

1. On input a security parameter k, select N = pq where p, q are

large primes congruent to 3 mod 4.

2. Select H : {0, 1}∗ → JN where JN denotes elements of ZN

with Jacobi symbol equal to +1.

– This may involve iterated hashing onto ZN .

3. Return the public system parameters

params = 〈N, H〉

and master secret msk = 〈p, q〉.

Information Security Group Royal Holloway, University of London
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Cocks’ IBE Scheme

Extract: Given an identity ID ∈ {0, 1}∗, set

dID = H(ID)(N+5−(p+q))/8 mod N

as the private key.

Notice that

(dID)2 = ±H(ID) mod N.

Information Security Group Royal Holloway, University of London
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Cocks’ IBE Scheme: Encryption

Encrypt: Inputs are a single bit message M and an identity ID.

1. Set x = (−1)M ∈ {+1,−1}.

2. Choose random t ∈ ZN such that
(

t
N

)

= x.

3. Compute the ciphertext

C =

(

t +
H(ID)

t

)

mod N.

Information Security Group Royal Holloway, University of London
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Cocks’ IBE Scheme: Decryption

Inputs to decryption are a ciphertext C and a private key dID.

Assume (for now) that (dID)2 = +H(ID) mod N .

Notice that

C + 2dID = t + 2dID +
H(ID)

t

= t(1 + dID/t)2 mod N

so that
(

C + 2dID

N

)

=

(

t

N

)

= x.

Information Security Group Royal Holloway, University of London
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Cocks’ IBE Scheme: Decryption

Hence the following decryption procedure is correct:

Decrypt:

1. Compute

x =

(

C + 2dID

N

)

.

2. If x = 1, output M = 0, otherwise output M = 1.

Information Security Group Royal Holloway, University of London
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Cocks’ IBE Scheme: Decryption

• If (dID)2 = −H(ID) mod N , then sender should compute the

ciphertext

C = (t−
H(ID)

t
) mod N

and recipient can decrypt as before.

• Problem is that sender does not (in general) know which

equation recipient’s private key satisfies:

(dID)2 = +H(ID) or (dID)2 = −H(ID).

• Solution is for sender to “hedge” and send as the ciphertext:

C = 〈(t +
H(ID)

t
) mod N, (t′ −

H(ID)

t′
) mod N〉.

Information Security Group Royal Holloway, University of London
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Cocks’ IBE Scheme: Security

• IND-ID-CPA security (in ROM) is based on hardness of the

quadratic residuosity problem in ZN :

– Given a ∈R ZN with
(

a
N

)

= 1, decide whether a is a square

or a non-square modulo N .

• This problem is known to be not harder than integer

factorisation

– i.e. an efficient algorithm to factorise N leads to an efficient

algorithm to solve the quadratic residuosity problem in ZN .

– But equivalence with integer factorisation not known.

• Same hard problem as basis for security of Goldwasser-Micali

probablistic encryption scheme.

Information Security Group Royal Holloway, University of London
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Cocks’ IBE Scheme: Security

• Original Cocks paper includes only a sketch proof of the

IND-ID-CPA security proof.

• A good exercise to write down a formal proof in the ROM.

• IND-ID-CCA security using Fujisaki-Okamoto conversion.

Information Security Group Royal Holloway, University of London
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Cocks’ IBE Scheme: Efficiency

• Scheme is computationally efficient: to encrypt a single bit of

message, only simple Jacobi symbol calculations and inversions

modulo N are needed.

• But scheme is very wasteful in terms of bandwidth: to transmit

a single bit requires 2 log2 N bits of ciphertext.

• Can expect log2 N ≈ 1024 for 80-bit security level.

• Hence to transport an 80-bit symmetric key, we’d need

80 · 2 · 1024 = 160 kbits of ciphertext.

Information Security Group Royal Holloway, University of London
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Cocks’ IBE Scheme: Open Problems

• It has been a major open problem to find a bandwidth-efficient

scheme using the same number-theoretic setting as Cocks’

scheme.

• Cocks’ approach does not seem to lend itself to further

applications in the same way that Boneh-Franklin IBE does.

• Quiz question: What is the (Naor-style) signature scheme

corresponding to Cocks’ IBE scheme?

• Is there an ID-NIKD scheme related to Cocks’ IBE scheme?

Information Security Group Royal Holloway, University of London
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3 Boneh-Gentry-Hamburg IBE

• Paper published at FOCS’2007 and as IACR eprint 2007/177.

• Solves the major open problem from Cocks: bandwidth-efficient

IBE based on quadratic residuosity problem.

• Encryption of ℓ-bit message needs about ℓ + log2 N bits instead

of 2ℓ logN bits.

• But encryption time is quartic in log2 N (instead of cubic as in,

say, RSA encryption) and private keys are large.

Information Security Group Royal Holloway, University of London
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Boneh-Gentry-Hamburg IBE – Overview

Suppose Q is a deterministic algorithm that, given input (N, R, S)

with R, S ∈ ZN , outputs polynomials f, g satisfying:

1. If R, S ∈ QRN , then f(r)g(s) ∈ QRN for all square roots r of

R and s of S.

2. If R ∈ QRN , then f(r)f(−r)S ∈ QRN for all square roots r of

R.

Then Q is said to be IBE Compatible.

Notice that, in this case,

(

f(r)

N

)

=

(

g(s)

N

)

.

Information Security Group Royal Holloway, University of London
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BGH IBE – Single-bit Construction

Setup:

1. On input a security parameter k, select N = pq where p, q are

large primes congruent to 3 mod 4.

2. Select H : {0, 1}∗ → JN .

3. Select u ∈R JN \ QRN .

4. Return the public system parameters

params = 〈N, H, u〉

and the master secret msk = 〈p, q〉.

Information Security Group Royal Holloway, University of London
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BGH IBE – Single-bit Construction

Extract: Given an identity ID ∈ {0, 1}∗, set:

• dID = H(ID)1/2 if H(ID) ∈ QRN , or

• dID = (uH(ID))1/2 if H(ID) ∈ QNRN .

Information Security Group Royal Holloway, University of London
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BGH IBE – Single-bit Construction

Encrypt: Inputs are a single bit message M and an identity ID.

1. Set x = (−1)M ∈ {+1,−1}.

2. Choose random s ∈ ZN and set S = s2 mod N .

3. Run IBE compatible algorithm Q twice:

(f, g)← Q(N, H(ID), S), (f ′, g′)← Q(N, uH(ID), S).

4. Compute the ciphertext

C = 〈S, x ·

(

g(s)

N

)

, x ·

(

g′(s)

N

)

〉

Information Security Group Royal Holloway, University of London
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BGH IBE – Single-bit Construction

Inputs to decryption are a ciphertext C and a private key dID.

Assume (for now) that H(ID) ∈ QRN . Then dID is a square root of

H(ID). So:
(

f(dID)

N

)

=

(

g(s)

N

)

.

Hence the following decryption procedure is correct:

Decrypt: Given input C = 〈S, c, c′〉:

1. Run Q on input (N, H(ID), S) to produce polynomials (f, g).

2. Compute

x = c ·

(

f(dID)

N

)

.

3. If x = 1, output M = 0, otherwise output M = 1.

Information Security Group Royal Holloway, University of London
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BGH IBE – Single-bit Construction

Assuming that H(ID) ∈ QNRN , then uH(ID) ∈ QRN and

d2
ID

= uH(ID).

Hence the following decryption procedure is correct in this case:

Decrypt: Given input C = 〈S, c, c′〉:

1. Run Q on input (N, uH(ID), S) to produce polynomials (f ′, g′).

2. Compute

x = c′ ·

(

f ′(dID)

N

)

.

3. If x = 1, output M = 0, otherwise output M = 1.

Information Security Group Royal Holloway, University of London
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BGH IBE – Multi-bit Construction

• So far, we have been encrypting one plaintext bit at a time,

with little apparent benefit over Cocks’ scheme.

• Main improvement comes from re-using a single S value across

many bits of plaintext M = M1, . . . , Mℓ.

• Now set Ri = H(ID, i) for i = 1, . . . , ℓ.

• Use pairs (S, Ri) for encrypting message bit i, as before.

• Transmit single S value and an additional 2 bits of ciphertext

ci, c
′

i per message bit.

• Size of ciphertext is now 2ℓ + log2 N bits for ℓ-bit message.

Information Security Group Royal Holloway, University of London
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BGH IBE – Multi-bit Construction

• Recipient needs a private key component dID,i corresponding to

each value Ri = H(ID, i).

• Hence scheme has large private keys (ℓ log2 N bits).

• Each dID,i needs to be a square root of H(ID, i) or of uH(ID, i).

• Care is needed to generate square roots in a unpredictable but

deterministic manner.

Information Security Group Royal Holloway, University of London
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BGH IBE – Security of Simplified Construction

• IND-ID-CPA security of the multi-bit version of the simplified

BGH construction can be proven based on the hardness of the

quadratic residuosity problem in ZN .

• Proof in the random oracle model, with a tight security

reduction.

• More advanced ideas can be used to obtain a scheme with:

– Shorter ciphertexts (ℓ + log2 N bits instead of 2ℓ + log2 N

bits).

– Recipient anonymity.

– Security proof in the standard model, based on an

interactive version of the quadratic residuosity assumption.

Information Security Group Royal Holloway, University of London
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BGH IBE – An IBE Compatible Algorithm

We have yet to show an algorithm Q that, given input (N, R, S)

with R, S ∈ ZN , outputs polynomials f, g satisfying:

1. If R, S ∈ QRN , then f(r)g(s) ∈ QRN for all square roots r of

R and s of S.

2. If R ∈ QRN , then f(r)f(−r)S ∈ QRN for all square roots r of

R.

Information Security Group Royal Holloway, University of London
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BGH IBE – An IBE Compatible Algorithm

Algorithm Q(N, R, S):

• Construct a solution (x, y) to the equation:

Rx2 + Sy2 = 1 mod N.

• Output f(r) = xr + 1 and g(s) = 2ys + 2.

IBE compatibility?

Information Security Group Royal Holloway, University of London
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BGH IBE – An IBE Compatible Algorithm

Suppose r, s are square roots of R, S (respectively, if these exist).

Then:

f(r)g(s) = (xr + 1)(2ys + 2)

= 2xrys + 2xr + 2ys + 2 + (Rx2 + Sy2 − 1)

= (xr + ys + 1)2 mod N.

Hence f(r)g(s) ∈ QRN . Moreover,

f(r) · f(−r) · S = . . . = (Sy)2 mod N.

Information Security Group Royal Holloway, University of London
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BGH IBE – Solving Rx2 + Sy2 = 1 mod N

• We need to solve this equation twice for each bit of the

plaintext.

• BGH paper contains several algorithmic tricks for doing this.

• One idea is to use the Pollard-Schnorr algorithm that was

introduced to break the Ong-Schnorr-Shamir signature scheme.

• Another is to lift to an equation over the integers to obtain a

ternary quadratic form:

R̂x2 + Ŝy2 − z2 = 0

and then use an algorithm of Cremona and Rusin (itself using

lattice reduction).

• Further optimisations possible because we only need 2ℓ

solutions to related problems.

Information Security Group Royal Holloway, University of London
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4 IBE From Trapdoor Discrete

Logarithm Groups

A Trapdoor Discrete Log group generator (TDL group generator)

is defined by a pair of algorithms TDLGen and SolveDL:

• TDLGen: An algorithm that takes a security parameter 1k as

input and outputs (G, r, g, T ) where G is a (description of a)

cyclic group of some order r with generator g and T denotes

trapdoor information.

• SolveDL: An algorithm which takes as input (G, r, g, T ) and a

group element h and outputs a ∈ Zr such that h = ga.

Information Security Group Royal Holloway, University of London



Fields Institute Workshop on New Directions in Cryptography 30

IBE From Trapdoor Discrete Logarithm Groups

• r, the group order, need not be prime (allows us to handle both

RSA and elliptic curve settings)

• In the RSA setting, r must be kept secret by the party running

the TDLGen algorithm.

– We assume instead that a suitable bound R on the group

order is available as part of the description of G.

• We do not insist that SolveDL runs in time polynomial in k.

• We will require CDH to still be hard in G without knowledge

of T .

Information Security Group Royal Holloway, University of London
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IBE From Trapdoor Discrete Logarithm Groups

Construction due to P. and Srinivasan (IACR eprint 2007/453):

Setup: On input 1k, this algorithm runs TDLGen to obtain

(G, r, g, T ). It outputs params = 〈G, g, H1, H2, n〉 where

H1 : {0, 1}∗ → G and H2 : G→ {0, 1}n are hash functions and n is

the size of plaintexts. It also outputs msk = 〈G, g, H1, H2, n, r, T 〉.

Extract: On input msk and identifier ID ∈ {0, 1}∗, run SolveDL

on input H1(ID) to obtain a value dID ∈ Zr such that

gdID = H1(ID).

The algorithm then outputs dID.

Information Security Group Royal Holloway, University of London
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IBE From Trapdoor Discrete Logarithm Groups

Encrypt: On input params, identifier ID ∈ {0, 1}∗ and message M ,

this algorithm returns a ciphertext C = 〈U, V 〉 where:

U = gs, V = M ⊕H2(H1(ID)s), where s ∈R Zr.

Decrypt: On input params, a private key dID and a ciphertext

C = 〈U, V 〉, this algorithm outputs M = V ⊕H2(U
dID).

Decryption works because:

UdID = gs·dID = H1(ID)s

• Essentially, we have an ID-based version of Elgamal encryption.

• We have key pair (dID, H(ID) = gdID) in place of usual (x, gx).

Information Security Group Royal Holloway, University of London
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Security of IBE From Trapdoor Discrete

Logarithm Groups

• IND-ID-CPA security can be proved based on the hardness of

Computational Diffie-Hellman problem in G, a trapdoor

discrete log group.

• Proof models H1 and H2 as random oracles.

• IND-ID-CCA security can be obtained by applying a

Fujisaki-Okamoto conversion.

So: do we have any trapdoor discrete log groups G for which we

can construct a function H1 hashing onto G?

Information Security Group Royal Holloway, University of London
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An RSA-based Instantiation

• Set N = pq where p = 3 mod 4, q = 1 mod 4, and

gcd(p− 1, q − 1) = 2.

• Let g ∈ ZN be such that gp = g mod p is primitive in Zp and

gq = g mod q is primitive in Zq.

• Then g has maximal order (p− 1)(q − 1)/2 and
(

g
N

)

= 1.

• Let G = 〈g〉. Then G = JN .

• Hashing onto G:

– We have
(

−1
N

)

= −1.

– Let H : {0, 1}∗ → ZN be a hash function.

– Then define

H1(ID) =

(

H(ID)

N

)

·H(ID).

Information Security Group Royal Holloway, University of London
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An RSA-based Instantiation

• Now we assume that, for some fixed B to be determined, both

p− 1 and q − 1 are B-smooth.

• We can use Pollard’s ρ algorithm and Pohlig-Hellman

algorithm to find discrete logs in Zp and Zq in time O(ℓB1/2),

where ℓ is the number of prime factors of p− 1 and q − 1.

• So, given trapdoor 〈p, q〉, we can solve DLP in G in time

O(ℓB1/2).

Information Security Group Royal Holloway, University of London
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An RSA-based Instantiation

• Without the trapdoor, solving DLP in G = JN is known to be

equivalent to factoring N .

• Best (known) algorithm is NFS (with running time LN (1/3, c))

or Pollard’s p− 1 algorithm (running time O(B log N/ log B)).

• By appropriate choice of N , we can achieve an asymmetry in

the time needed to solve DLP in G with and without the

trapdoor.

• For B = 280 and N ≈ 21024, the times are (roughly) 240 and

280, respectively.

Information Security Group Royal Holloway, University of London
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An RSA-based Instantiation

• Resulting IBE scheme has efficient encryption (two exps mod

N) and decryption (one exp mod N), compact ciphertexts and

public parameters, and small private keys.

• It has IND-ID-CPA/CCA security in the ROM, assuming the

hardness of factoring integers of the form N = pq with p− 1

and q − 1 that are B-smooth.

• Only drawback is the 240 effort required for each private key

extraction.

• This scheme is a variant of the Maurer-Yacobi scheme from

Eurocrypt 1991.

– Maurer-Yacobi actually presented an ID-NIKDS scheme.

– Their scheme (and later variants) omitted hashing.

Information Security Group Royal Holloway, University of London
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An Instantiation from Elliptic Curves

• GHS (Eurocrypt 2002) and Teske (JoC, 2004) proposed the use

of Weil descent to build a trapdoor discrete log for the elliptic

curve setting.

• Main idea is to build a special curve E(Fqk) and an explicit

homomorphism Φ : E(Fqk)→ JC(Fq) where C is a hyperelliptic

curve of high genus.

• DLP in JC(Fq) can be solved in sub-exponential time using

index-calculus approach.

• E(Fqk) can be “disguised” using a random walk of isogenies to

create a seemingly random curve E′(Fqk).

• So DLP in E′(Fqk) should take time O(qk/2) using generic

algorithms.

Information Security Group Royal Holloway, University of London
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An Instantiation from Elliptic Curves

• This gives us a trapdoor for the discrete log problem in a cyclic

subgroup 〈P ′〉 of E′(Fqk):

• Use inverse of random walk of isogenies to map DLP from

E′(Fqk) to E(Fqk)

• Then use Φ to map DLP to JC(Fq).

• Example parameters: q = 223, k = 7, giving (conjectured) 80

bits of security.

Information Security Group Royal Holloway, University of London
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An Instantiation from Elliptic Curves

• Resulting IBE scheme requires 2 (resp. 1) scalar multiplications

on E′(F2161) for encryption (resp. decryption).

• Fast hashing onto subgroup of E′ using standard techniques.

• Hence extremely fast encryption and decryption, with compact

ciphertexts, public parameters and private keys.

• Index calculus techniques make finding many discrete logs

almost as easy as finding one.

– So amortised cost of roughly 226 bit operations per private

key extraction.

• Well suited to deployment in constrained environments with a

computationally meaty TA.

Information Security Group Royal Holloway, University of London
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TDL Groups: Open Problems

• Neither of our instantiations is completely satisfactory from a

practical perspective.

• We have very efficient schemes (in terms of encryption and

decryption), but:

– RSA setting: relatively high cost of extracting discrete logs

with trapdoor compared to without.

– ECC setting: uncertainty over hardness of DLP on chosen

curves (depends on effectiveness of using isogenies to

disguise E); scalability to higher security levels.

• A truly efficient trapdoor for the DLP in some class of

cryptographically interesting groups would have many

applications in cryptography!

Information Security Group Royal Holloway, University of London
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5 IBE From Lattice Problems

• Recent paper of Gentry, Peikert and Vaikuntanathan (STOC

2008 and IACR eprint 2007/432).

• IBE schemes (and much else) based on hardness of “learning

with error” (LWE) problem in random modular lattices.

– LWE problem generalises LPN problem used in RFID

authentication protocols.

– Problem is to distinguish “lattice point plus error” from a

random vector in Z
n
q .

– Regev: as hard as solving standard worst-case lattice

problems (but using a quantum algorithm!).

Information Security Group Royal Holloway, University of London
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IBE From Lattice Problems: Overview

• Public parameters include matrix A ∈ Z
n×m
q , defining a

modular lattice, and a hash function H : {0, 1}∗ → Z
n
q .

• Here, n, m and q are all moderate values.

• Master secret is a basis of short vectors for A.

• Given this special basis, TA can solve equation:

H(ID) = A · dID mod q

for short vector dID ∈ Z
m
q – giving private key extraction

algorithm.

Information Security Group Royal Holloway, University of London
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IBE From Lattice Problems: Overview

• To encrypt a bit b for identity ID, output

C = (p, c) = (AT s + x, H(ID)T s + x + b · ⌊q/2⌋) ∈ Z
m
q × Zq

• Here s ∈R Z
n
q and x is an error vector selected according to

some distribution.

• To decrypt C = (p, c), compute b′ = c− dT
ID · p, outputting 0 if

the result is closer to 0 than ⌊q/2⌋ mod q, and 1 otherwise.

Information Security Group Royal Holloway, University of London
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IBE From Lattice Problems: Security and

Efficiency

• Scheme can be extended to encrypt multiple bits at a time

using fixed s and p = AT s + x.

• Similar to BGH IBE scheme – requires large private keys.

• Encryption and decryption require only simple operations

involving small vectors and matrices with elements from Zq for

moderate q.

• IND-ID-CPA security and recipient anonymity in the ROM

based on hardness of LWE problem.

– How should parameters n, m and q be selected to achieve a

given security level for this scheme?

Information Security Group Royal Holloway, University of London



Fields Institute Workshop on New Directions in Cryptography 46

6 Conclusions

• Pairing-free IBE motivated by desire for diversification.

• Still in its infancy (relative to pairing-based approaches).

• Beautiful and sophisticated mathematical techniques.

– Particularly in Cocks’, BGH and lattice-based schemes.

• Practical evaluation of pairing-free schemes is still lacking

– e.g. specifying secure choice of parameters for new

lattice-based schemes.

– e.g. prototyping ECC-TDL-based scheme.

• Much yet to be discovered!
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