

AN IRDETO COMPANY

It's Not the Size of Your Keys, It's How You Use Them

Cryptography in a White-Box World

A Presentation for the New Directions in Cryptography Workshop Phil Eisen, Cloakware Corporation June 27, 2008

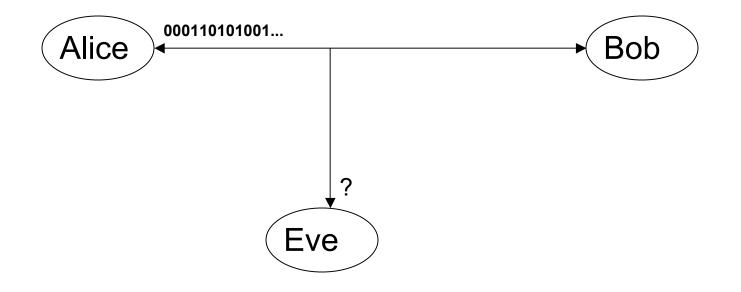
The Cryptographer's Dream

- Many people who become cryptographers do so for one of two reasons
 - To develop an unbreakable cipher
 - To break a well-known cipher
- > Cipher cracking contests are very popular, involving thousands of people
- People continue to make machines to break DES, an already broken cipher
 - They want to break it <u>better</u>!

The Rules of the Game

- Everyone who takes an introductory cryptography course learns that there are rules for cipher designers, and rules for cryptanalysts
- > To have a cipher design taken seriously, you must
 - Publish your algorithm in complete detail
 - Provide test vectors
 - Show that your cipher resists known attacks
- > History has borne out the soundness of these rules
 - Security through obscurity doesn't work for very long

The Rules of the Game (2)


> To break a cipher, here's what you get:

- Full algorithmic details
- Access to an implementation that encrypts under the key of interest
- The ability to pass any plaintext you want to this implementation, and to see the resulting ciphertext (adaptive chosen plaintext attacks)
- > What you don't get, however, is access to the internals of the implementation while it's running
 - This is the black-box attack model
 - Almost all new ciphers proposed today are described and attacked under this model

The Rules of the Game (3)

> Where did the cryptanalyst's rules come from?

The Rules of the Game (4)

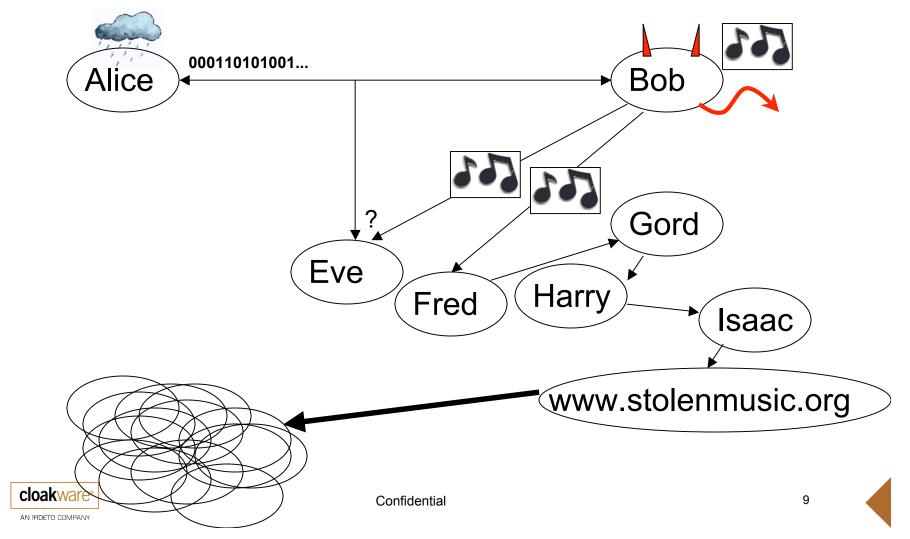
- In secure hardware (an ever changing entity), the black-box attack model is a realistic one
 - Question: when was the last time you used secure hardware?

Times Have Changed

> Software is easier (and therefore cheaper) to

- design
- implement (fabricate)
- test
- distribute
- diversify
- revoke
- update
- retire
- > Overall, these factors outweigh the security considerations

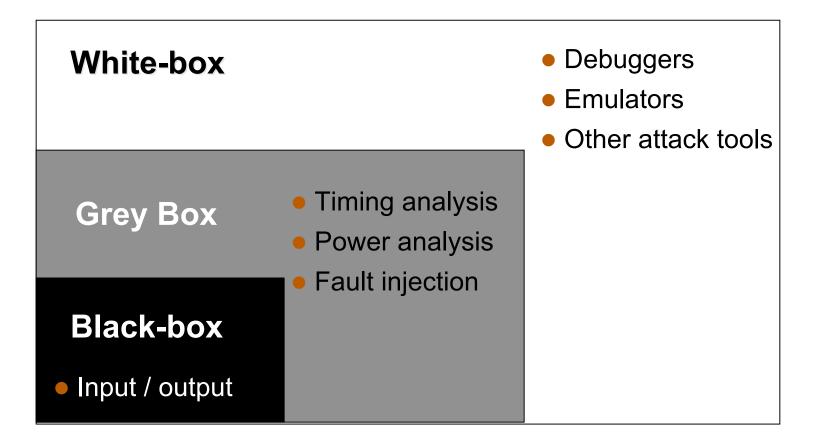
Times Have Changed (2)


> 1977 – DES

- Optimized for hardware implementations
- Standard did not allow for software implementations until 1988
- > 2000 AES
 - Evaluation criteria explicitly discussed performance in software
 - Hardware performance was not considered until the 2nd round
- > We live in a software world

Times Have Changed (3)

> Who's the attacker?


White-Box Attacks

> Let's visit this new attack context

- Software implementations
- Environment is untrusted
- Attacker has direct access to the machine while it's running
- > What's meant by direct access? The attacker can
 - Trace every program instruction
 - View the contents of memory and cache at any granularity
 - Stop execution at any point and run an off-line process
 - Reduced round attacks are no longer theoretical
 - Alter code or memory at will
 - Fault attacks are real and trivial to execute
 - and can do all this for as long as they want, whenever they want, in collusion with as many other people as they can find

White-Box Attacks (2)

Interlude – Attacking ECC

> Recall the always double and add method described by Prof. Miri as a defence against side channel attacks on elliptic curve scalar multiplication

```
Input: d = d_1 d_2 \dots d_n (the scalar), P (the elliptic curve point)

Output: Q = dP (another elliptic curve point)

Q = P

for i from 2 to n

T1 = 2Q

T2 = T1 + P

if (d<sub>i</sub> = 1)

Q = T2

else

Q = T1

return Q
```


Attacking ECC (2)

- The black-box attacker sees only d, P and dP
 - Always double and add is overkill in this case
- > The grey-box attacker sees

- A consistent power trace leaks no information
- > The white-box attacker sees

if
$$(d_i = 1)$$

Q = T2
else
Q = T1

They can trace the execution and extract the key

White-Box Attacks (3)

- The security proofs from the black-box attack context simply don't carry over to the white-box context
 - NB: the proofs are not invalid, they just consider a different attack model
- > We are now forced to consider a white-box attacker; they are strictly more powerful than our classic blackbox attacker

White-Box Cryptography

- > A short-form for cryptographic implementations that provide security against a white-box attacker
- Even more so than with side-channel attacks, the implementation becomes as important as the algorithm itself

White-Box Cryptography (2)

- > This is still a relatively untapped field, with a lot of fundamental unanswered questions
 - What is a formal definition for the white-box attack context?
 - What's meant by "security" in a white-box attack context?
 - What are we trying to defend? For how long?
 - Is practical white-box cryptography possible?
 - This almost certainly depends on answers to the first two questions
 - Are existing algorithms, designed for the black-box attack context only, a good starting point, or should we start from scratch?

White-Box Cryptography and Obfuscation

- There are several models of obfuscation, but all involve the hiding of certain properties of a program
- The value of the key is one such (very important) property
- Thus, if we could create an obfuscator, we could apply it to cryptographic algorithms and increase security against white-box attackers

Some Results

- > We do know that it's possible to implement a cipher in such a way that the best attack is a black-box attack
- > Consider AES, with key K
 - It can be described as a function that takes a 128-bit input and produces a 128-bit output
 - Such a function can be "implemented" as a lookup table with 2¹²⁸ entries
 - Such an implementation has no internals, so it can only be attacked as a black box
- > Obviously, this isn't practical
- > Open question: can we do any better?

Some Results (2)

- Barak et al "On the (Im)possibility of Obfuscating Programs
 - Proposed a definition for an obfuscator, and showed that there existed contrived programs that could not be obfuscated under this model
 - No claims made regarding the obfuscatability of programs in general
 - Their result applies equally well to hardware implementations, so doesn't quite match the real world

Some Results (3)

- > Other models for obfuscation:
 - Canetti et al (2008) showed that it is possible to obfuscate point functions under their model
 - Hohenberger et al (2007) were able to obfuscate reencryption under a security-oriented model
 - Goldwasser et al (2008) introduced *best-possible* obfuscation, with various positive and negative results

Some Results (4)

- > Proposed implementations of AES:
 - Chow et al (2002), "White-Box Cryptography and an AES Implementation"
 - Presented the first implementation of AES that took white-box attacks into account
 - Billet et al (2004), "Cryptanalysis of a White-Box AES Implementation"
 - An attack on the Chow et al implementation
 - Michiels et al (2008), "Cryptanalysis of White-Box Implementations"
 - Another attack

Some Results (5)

- > Proposed implementations of DES:
 - Chow et al (2002), "A White-Box DES Implementation for DRM Applications"
 - The first implementation of DES that took white-box attacks into account
 - Jacob et al (2002), "Attacking an Obfuscated Cipher by Injecting Faults"
 - An attack on one variant of white-box DES proposed by Chow et al
 - Link et al (2005), "Clarifying Obfuscation: Improving the Security of White-Box DES"
 - An improved implementation
 - Goubin et al (2007), "Cryptanalysis of White-Box DES Implementations"
 - Wyseur et al (2007), "Cryptanalysis of White-Box DES Implementations with Arbitrary External Encodings"
 - Powerful attacks on the Chow et al and Link et al implementations

What's Next?

- > A "white-box friendly" cipher design
 - Design a cipher from the ground up to be secure in a whitebox attack context
 - This would require both a cipher design, with demonstrable black-box security properties, and a description of a whitebox implementation

Conclusions

- The model we have used for analyzing ciphers needs updating
- Software implementations and legitimate users as attackers push us towards a white-box attack context
- The implementation of a cipher is as important as the cipher itself
- There is a ton of opportunity to do seminal work in white-box cryptography

Contact information

Phil Eisen Senior Cryptomathematician phil.eisen@cloakware.com

www.cloakware.com

Cloakware Inc. 8320 Old Courthouse Road Suite 201 Vienna, VA, U.S.A. 22182 Tel: +1 703.847.3611

Cloakware Corporation 84 Hines Road, Suite 300 Ottawa, ON, Canada K2K 3G3 Tel: +1 613.271.9446 Cloakware Ltd. 33-35 Daws Lane London NW7 4SD United Kingdom Tel: +44 (0) 1189.340940

