Real Hyperelliptic Curves

Renate Scheidler

rscheidl@math.ucalgary.ca

Fields Institute Workshop on New Directions in Cryptography, June 25-27, 2008, University of Ottawa

Joint work with

Mike Jacobson (University of Calgary) and Andreas Stein (University of Oldenburg)

Research supported in part by NSERC of Canada

$$C : y^2 + h(x)y = f(x)$$

$$C : y^2 + h(x)y = f(x)$$

 $f, h \in \mathbb{F}_q[x]$; h = 0 if q odd; absolutely irreducible; non-singular; of *genus* g

$$C : y^2 + h(x)y = f(x)$$

 $f, h \in \mathbb{F}_q[x]$; h = 0 if q odd; absolutely irreducible; non-singular; of *genus* g

Imaginary Model

•
$$f$$
 monic and $deg(f) = 2g + 1$

•
$$\deg(h) \le g$$
 if q even

$$C : y^2 + h(x)y = f(x)$$

 $f,h \in \mathbb{F}_q[x]$; h = 0 if q odd;

absolutely irreducible; non-singular; of genus g

Imaginary Model

- $f \mod deg(f) = 2g + 1$
- $\deg(h) \leq g$ if q even

Real Model

- If q odd: f monic and deg(f) = 2g + 2
- If q even: h monic, deg(h) = g + 1 and
 - $\deg(f) \le 2g + 1$ or

• $\deg(f) = 2g + 2$, $\operatorname{sgn}(f) = e^2 + e$ ($e \in \mathbb{F}_q^*$)

 $\mathcal{J} = \mathsf{Jac}_{\mathbb{F}_q}(C)$: degree zero divisor class group of C over \mathbb{F}_q

 $\mathcal{J} = \mathsf{Jac}_{\mathbb{F}_q}(C)$: degree zero divisor class group of C over \mathbb{F}_q

Representation of degree zero divisors: D = (s; a, b):

- $s, a, b \in \mathbb{F}_q[x]$, s and a monic
- \bullet s and a unique, b (mod a) unique

$$a \mid f + hb - b^2$$

 $\mathcal{J} = \operatorname{Jac}_{\mathbb{F}_q}(C)$: degree zero divisor class group of C over \mathbb{F}_q

Representation of degree zero divisors: D = (s; a, b):

- $s, a, b \in \mathbb{F}_q[x]$, s and a monic
- \checkmark s and a unique, b (mod a) unique

$$a \mid f + hb - b^2$$

D semi-reduced: s = 1D reduced: s = 1 and $deg(a) \le g$.

 $\mathcal{J} = \operatorname{Jac}_{\mathbb{F}_q}(C)$: degree zero divisor class group of C over \mathbb{F}_q

Representation of degree zero divisors: D = (s; a, b):

- $s, a, b \in \mathbb{F}_q[x]$, s and a monic
- \checkmark s and a unique, b (mod a) unique

$$a \mid f + hb - b^2$$

D semi-reduced: s = 1D reduced: s = 1 and $deg(a) \le g$.

Theorem: Every class $[D] \in \mathcal{J}$ has a unique reduced representative Red(D)

 $\mathcal{J} = \operatorname{Jac}_{\mathbb{F}_q}(C)$: degree zero divisor class group of C over \mathbb{F}_q

Representation of degree zero divisors: D = (s; a, b):

- \bullet $s, a, b \in \mathbb{F}_q[x]$, s and a monic
- \checkmark s and a unique, b (mod a) unique

$$a \mid f + hb - b^2$$

D semi-reduced: s = 1D reduced: s = 1 and $deg(a) \le g$.

Theorem: Every class $[D] \in \mathcal{J}$ has a unique reduced representative Red(D)

Arithmetic in \mathcal{J} via reduced representatives (giant steps): $\operatorname{Red}(D') \oplus \operatorname{Red}(D'') \stackrel{\text{def}}{=} \operatorname{Red}(D' + D'')$

• Cantor's algorithm (Cantor 1987) divisor addition with subsequent reduction steps $17g^2 + O(g)$ operations in \mathbb{F}_q (Stein 2001)

- Cantor's algorithm (Cantor 1987) divisor addition with subsequent reduction steps $17g^2 + O(g)$ operations in \mathbb{F}_q (Stein 2001)
- NUCOMP (Shanks-Atkin 1989, van der Poorten 2003) Cg^2 operation in \mathbb{F}_q , C < 17

- Cantor's algorithm (Cantor 1987) divisor addition with subsequent reduction steps $17g^2 + O(g)$ operations in \mathbb{F}_q (Stein 2001)
- NUCOMP (Shanks-Atkin 1989, van der Poorten 2003) Cg^2 operation in \mathbb{F}_q , C < 17
- Explicit formulas for low genus curves:

- Cantor's algorithm (Cantor 1987) divisor addition with subsequent reduction steps $17g^2 + O(g)$ operations in \mathbb{F}_q (Stein 2001)
- NUCOMP (Shanks-Atkin 1989, van der Poorten 2003) Cg^2 operation in \mathbb{F}_q , C < 17
- Explicit formulas for low genus curves:
 - Imaginary: g = 2, 3, 4www.hyperelliptic.org/EFD/

- Cantor's algorithm (Cantor 1987) divisor addition with subsequent reduction steps $17g^2 + O(g)$ operations in \mathbb{F}_q (Stein 2001)
- NUCOMP (Shanks-Atkin 1989, van der Poorten 2003) Cg^2 operation in \mathbb{F}_q , C < 17
- Explicit formulas for low genus curves:
 - Imaginary: g = 2, 3, 4www.hyperelliptic.org/EFD/
 - Real: g = 2, affine coordinates Erickson-Jacobson-Shang-Shen-Stein, WAIFI 2007

Alice and Bob agree on q, C imaginary, a reduced divisor D

Alice and Bob agree on q, C imaginary, a reduced divisor D

	Alice	Bob	
1.	Generates $m \in_R]1, \operatorname{ord}(D)[$	Generates $n \in_R]1, \operatorname{ord}(D)[$	
	// Fixed base scenario //		
2.	Sends $D_m = \text{Red}(mD)$ to Bob	Sends $D_n = \text{Red}(nD)$ to Alice	
	// Variable base scenario //		
3.	Computes $K = \text{Red}(mD_n)$	Computes $K = \text{Red}(nD_m)$	

Alice and Bob agree on q, C imaginary, a reduced divisor D

	Alice	Bob	
1.	Generates $m \in_R]1, \operatorname{ord}(D)[$	Generates $n \in_R]1, \operatorname{ord}(D)[$	
	// Fixed base scenario //		
2.	Sends $D_m = \text{Red}(mD)$ to Bob	Sends $D_n = \text{Red}(nD)$ to Alice	
	// Variable base scenario //		
3.	Computes $K = \text{Red}(mD_n)$	Computes $K = \text{Red}(nD_m)$	

The secret is the reduced divisor K = Red(mnD)

Alice and Bob agree on q, C imaginary, a reduced divisor D

	Alice	Bob	
1.	Generates $m \in_R]1, \operatorname{ord}(D)[$	Generates $n \in_R]1, \operatorname{ord}(D)[$	
	// Fixed base scenario //		
2.	Sends $D_m = \text{Red}(mD)$ to Bob	Sends $D_n = \text{Red}(nD)$ to Alice	
	// Variable base scenario //		
3.	Computes $K = \text{Red}(mD_n)$	Computes $K = \text{Red}(nD_m)$	

The secret is the reduced divisor K = Red(mnD)

 $\langle D \rangle \approx |\mathcal{J}| \approx q^g$ (exponentially large in the size of *C*)

Alice and Bob agree on q, C imaginary, a reduced divisor D

	Alice	Bob	
1.	Generates $m \in_R]1, \operatorname{ord}(D)[$	Generates $n \in_R]1, \operatorname{ord}(D)[$	
	// Fixed base scenario //		
2.	Sends $D_m = \text{Red}(mD)$ to Bob	Sends $D_n = \text{Red}(nD)$ to Alice	
	// Variable base scenario //		
3.	Computes $K = \text{Red}(mD_n)$	Computes $K = \text{Red}(nD_m)$	

The secret is the reduced divisor K = Red(mnD)

 $\langle D \rangle \approx |\mathcal{J}| \approx q^g$ (exponentially large in the size of C)

DLP is exponential for small g(g = 2 is best; DLP complexity $O(q) = O(\sqrt{|\mathcal{J}|})$)

Representation of degree zero divisors: D = (s; a, b; v):

- \blacksquare s, a, b as before
- $D v \in \mathbb{Z}$

Representation of degree zero divisors: D = (s; a, b; v):

 \checkmark s, a, b as before

• $v \in \mathbb{Z}$

Semi-reduced and reduced defined as before – no restrictions on \boldsymbol{v}

Representation of degree zero divisors: D = (s; a, b; v):

 \checkmark s, a, b as before

• $v \in \mathbb{Z}$

Semi-reduced and reduced defined as before – no restrictions on \boldsymbol{v}

Fact: Reduced representatives of divisor classes are no longer unique

Representation of degree zero divisors: D = (s; a, b; v):

 \checkmark s, a, b as before

 $v \in \mathbb{Z}$

Semi-reduced and reduced defined as before – no restrictions on \boldsymbol{v}

Fact: Reduced representatives of divisor classes are no longer unique

Theorem: Every class $[D] \in \mathcal{J}$ has a unique reduced representative Red'(D) = (a, b, v) where v is restricted to a suitable interval of length $g - \deg(a) + 1$

(Paulus-Rück 1999; Galbraith-Harrison-Mireless 2008)

Representation of degree zero divisors: D = (s; a, b; v):

 \blacksquare s, a, b as before

 $\, \bullet \, v \in \mathbb{Z}$

Semi-reduced and reduced defined as before – no restrictions on \boldsymbol{v}

Fact: Reduced representatives of divisor classes are no longer unique

Theorem: Every class $[D] \in \mathcal{J}$ has a unique reduced representative Red'(D) = (a, b, v) where v is restricted to a suitable interval of length $g - \deg(a) + 1$

(Paulus-Rück 1999; Galbraith-Harrison-Mireless 2008)

Could use this again for arithmetic in ${\mathcal{J}}$

Computing Red'(D)

• Compute $D' \oplus D'' = \text{Red}(D' + D'')$ as in the imaginary case using a giant step — Cg^2 operations in \mathbb{F}_q

- Compute $D' \oplus D'' = \text{Red}(D' + D'')$ as in the imaginary case using a giant step Cg^2 operations in \mathbb{F}_q
- Apply further reduction steps to until Red'(D) is reached up to $C'g^2$ operations in \mathbb{F}_q

- Compute $D' \oplus D'' = \text{Red}(D' + D'')$ as in the imaginary case using a giant step Cg^2 operations in \mathbb{F}_q
- Apply further reduction steps to until Red'(D) is reached up to $C'g^2$ operations in \mathbb{F}_q

 $(C+C')g^2$ field operations — slower than imaginary Jacobian arithmetic

- Compute $D' \oplus D'' = \text{Red}(D' + D'')$ as in the imaginary case using a giant step Cg^2 operations in \mathbb{F}_q
- Apply further reduction steps to until Red'(D) is reached up to $C'g^2$ operations in \mathbb{F}_q

 $(C+C')g^2$ field operations — slower than imaginary Jacobian arithmetic

Henceforth, let C be real. Then $|\mathcal{J}| = HR$ where

- Compute $D' \oplus D'' = \text{Red}(D' + D'')$ as in the imaginary case using a giant step Cg^2 operations in \mathbb{F}_q
- ▲ Apply further reduction steps to until Red'(D) is reached up to $C'g^2$ operations in \mathbb{F}_q

 $(C+C')g^2$ field operations — slower than imaginary Jacobian arithmetic

Henceforth, let C be real. Then $|\mathcal{J}| = HR$ where

It is the order of the ideal class group of the coordinate ring of C; usually very small
Computing Red'(D)

- Compute $D' \oplus D'' = \text{Red}(D' + D'')$ as in the imaginary case using a giant step Cg^2 operations in \mathbb{F}_q
- ▲ Apply further reduction steps to until Red'(D) is reached up to $C'g^2$ operations in \mathbb{F}_q

 $(C+C')g^2$ field operations — slower than imaginary Jacobian arithmetic

Henceforth, let C be real. Then $|\mathcal{J}| = HR$ where

- It is the order of the ideal class group of the coordinate ring of C; usually very small
- *R* is the *regulator* of *C*, i.e. the order of the divisor class of $\infty_1 \infty_2$ where ∞_1 and ∞_2 are the two points at infinity; usually $R \approx |\mathcal{J}| \approx q^g$

Infrastructure:

 $\mathcal{R} = \{ D \mid D \text{ is a reduced principal divisor with } 0 \le -v < R \}$

Infrastructure:

 $\mathcal{R} = \{ D \mid D \text{ is a reduced principal divisor with } 0 \le -v < R \}$

Properties

 $\mathcal{R} = \{ D \mid D \text{ is a reduced principal divisor with } 0 \le -v < R \}$

Properties

• \mathcal{R} is finite and of cardinality $\approx R \approx q^g$

 $\mathcal{R} = \{ D \mid D \text{ is a reduced principal divisor with } 0 \le -v < R \}$

Properties

- \mathcal{R} is finite and of cardinality $\approx R \approx q^g$
- \mathcal{R} is ordered by *distance*: $\delta(D) = -v$, so

 $\mathcal{R} = \{D_1 = \mathbf{0}, D_2, \dots, D_r\}, \quad D_{i+1} = D_i - \operatorname{div}\left(\frac{a_i + y}{b_i}\right)$

 $\mathcal{R} = \{ D \mid D \text{ is a reduced principal divisor with } 0 \le -v < R \}$

Properties

- \mathcal{R} is finite and of cardinality $\approx R \approx q^g$
- \mathcal{R} is ordered by *distance*: $\delta(D) = -v$, so

 $\mathcal{R} = \{D_1 = \mathbf{0}, D_2, \dots, D_r\}, \quad D_{i+1} = D_i - \mathsf{div}\left(\frac{a_i + y}{b_i}\right)$

$$\bullet \ 0 = \delta_1 < \delta_2 < \dots < \delta_r < R$$

 $\mathcal{R} = \{ D \mid D \text{ is a reduced principal divisor with } 0 \le -v < R \}$

Properties

- \mathcal{R} is finite and of cardinality $\approx R \approx q^g$
- \mathcal{R} is ordered by *distance*: $\delta(D) = -v$, so

 $\mathcal{R} = \{D_1 = \mathbf{0}, D_2, \dots, D_r\}, \quad D_{i+1} = D_i - \operatorname{div}\left(\frac{a_i + y}{b_i}\right)$

•
$$0 = \delta_1 < \delta_2 < \dots < \delta_r < R$$

• $\delta_1 = 0$, $\delta_2 = g + 1$, $1 \le \delta_{i+1} - \delta_i \le g$ for $2 \le i \le r - 1$

 $\mathcal{R} = \{ D \mid D \text{ is a reduced principal divisor with } 0 \le -v < R \}$

Properties

- \mathcal{R} is finite and of cardinality $\approx R \approx q^g$
- \mathcal{R} is ordered by *distance*: $\delta(D) = -v$, so

 $\mathcal{R} = \{D_1 = \mathbf{0}, D_2, \dots, D_r\}, \quad D_{i+1} = D_i - \operatorname{div}\left(\frac{a_i + y}{b_i}\right)$

•
$$0 = \delta_1 < \delta_2 < \dots < \delta_r < R$$

• $\delta_1 = 0$, $\delta_2 = g + 1$, $1 \le \delta_{i+1} - \delta_i \le g$ for $2 \le i \le r - 1$

• A reduction step moves from D_i to D_{i+1} and is also known as a **baby step** — O(g) operations in \mathbb{F}_q

 $\mathcal{R} = \{ D \mid D \text{ is a reduced principal divisor with } 0 \le -v < R \}$

Properties

- \mathcal{R} is finite and of cardinality $\approx R \approx q^g$
- \mathcal{R} is ordered by *distance*: $\delta(D) = -v$, so

$$\mathcal{R} = \{D_1 = \mathbf{0}, D_2, \dots, D_r\}, \quad D_{i+1} = D_i - \operatorname{div}\left(\frac{a_i + y}{b_i}\right)$$

•
$$0 = \delta_1 < \delta_2 < \dots < \delta_r < R$$

• $\delta_1 = 0$, $\delta_2 = g + 1$, $1 \le \delta_{i+1} - \delta_i \le g$ for $2 \le i \le r - 1$

▲ A reduction step moves from D_i to D_{i+1} and is also known as a **baby step** — O(g) operations in \mathbb{F}_q

•
$$D_{mr+i} = D_i + mR(\infty_1 - \infty_2)$$
 for $m \in \mathbb{N}$ and $1 \le i \le r$

 \mathcal{R} is "almost" an Abelian group under giant steps:

• Closure: $D', D'' \in \mathcal{R} \Rightarrow D' \oplus D'' \in \mathcal{R}$

- Closure: $D', D'' \in \mathcal{R} \Rightarrow D' \oplus D'' \in \mathcal{R}$
- **J** Identity: $D_1 = \mathbf{0} = (1, 0; 0)$

- Closure: $D', D'' \in \mathcal{R} \Rightarrow D' \oplus D'' \in \mathcal{R}$
- **J** Identity: $D_1 = \mathbf{0} = (1, 0; 0)$
- Inverses: The inverse of D = (a, b; v) is $-D = (a, -h - b; -\deg(a) - v)$

- Closure: $D', D'' \in \mathcal{R} \Rightarrow D' \oplus D'' \in \mathcal{R}$
- **•** Identity: $D_1 = \mathbf{0} = (1, 0; 0)$
- Inverses: The inverse of D = (a, b; v) is $-D = (a, -h - b; -\deg(a) - v)$
- Commutativity: $D' \oplus D'' = D'' \oplus D'$

 \mathcal{R} is "almost" an Abelian group under giant steps:

- Closure: $D', D'' \in \mathcal{R} \Rightarrow D' \oplus D'' \in \mathcal{R}$
- **•** Identity: $D_1 = \mathbf{0} = (1, 0; 0)$
- Inverses: The inverse of D = (a, b; v) is $-D = (a, -h - b; -\deg(a) - v)$
- Commutativity: $D' \oplus D'' = D'' \oplus D'$
- "Almost" associative:

 $\delta(D'\oplus D'') = \delta(D') + \delta(D'') - d \text{ with } 0 \le d \le 2g$

 \mathcal{R} is "almost" an Abelian group under giant steps:

- Closure: $D', D'' \in \mathcal{R} \Rightarrow D' \oplus D'' \in \mathcal{R}$
- **•** Identity: $D_1 = \mathbf{0} = (1, 0; 0)$
- Inverses: The inverse of D = (a, b; v) is $-D = (a, -h - b; -\deg(a) - v)$
- Commutativity: $D' \oplus D'' = D'' \oplus D'$
- "Almost" associative:

 $\delta(D' \oplus D'') = \delta(D') + \delta(D'') - d \text{ with } 0 \le d \le 2g$

So $D \oplus (D' \oplus D'')$ is "close to" $(D \oplus D') \oplus D''$ (within 4g in distance)

If D = (a, b; v) ∈ R, then (a, b) determines $v = -\delta(D)$ uniquely and vice versa. So we can write D = (a, b)

- If D = (a, b; v) ∈ 𝔅, then (a, b) determines v = -δ(D) uniquely and vice versa. So we can write D = (a, b)
- Given $D = (a, b) \in \mathcal{R}$, it is computationally infeasible to find $\delta(D)$ infrastructure discrete log problem

- If D = (a, b; v) ∈ 𝔅, then (a, b) determines v = -δ(D) uniquely and vice versa. So we can write D = (a, b)
- Given $D = (a, b) \in \mathcal{R}$, it is computationally infeasible to find $\delta(D)$ infrastructure discrete log problem

Divisors of Fixed Distance:

- If D = (a, b; v) ∈ R, then (a, b) determines $v = -\delta(D)$ uniquely and vice versa. So we can write D = (a, b)
- Given $D = (a, b) \in \mathcal{R}$, it is computationally infeasible to find $\delta(D)$ infrastructure discrete log problem

Divisors of Fixed Distance: For $n \in [0, R)$, the divisor $D(n) \in \mathcal{R}$ below *n* is the divisor $D_i \in \mathcal{R}$ such that

$$\delta_i \leq n < \delta_{i+1}$$

- If D = (a, b; v) ∈ R, then (a, b) determines $v = -\delta(D)$ uniquely and vice versa. So we can write D = (a, b)
- Given $D = (a, b) \in \mathcal{R}$, it is computationally infeasible to find $\delta(D)$ infrastructure discrete log problem

Divisors of Fixed Distance: For $n \in [0, R)$, the divisor $D(n) \in \mathcal{R}$ below *n* is the divisor $D_i \in \mathcal{R}$ such that

$$\delta_i \leq n < \delta_{i+1}$$

Key Point: $n \rightsquigarrow D(n)$ easy, $D \rightsquigarrow \delta(D)$ hard

(S.-Stein-Williams 1996) Alice and Bob agree on a real hyperelliptic curve *C* over a finite field \mathbb{F}_q with regulator *R*

(S.-Stein-Williams 1996) Alice and Bob agree on a real hyperelliptic curve *C* over a finite field \mathbb{F}_q with regulator *R*

	Alice	Bob	
1.	Generates $m \in_R]1, R[$	Generates $n \in R$]1, R[
	// Fixed base scenario //		
2.	Sends $D(m)$ to Bob	Sends $D(n)$ to Alice	
	// Variable base scenario //		
3.	Computes $D(nm)$	Computes <i>D(mn)</i>	
	from $D(n)$ and m	from $D(m)$ and n	

(S.-Stein-Williams 1996) Alice and Bob agree on a real hyperelliptic curve *C* over a finite field \mathbb{F}_q with regulator *R*

	Alice	Bob	
1.	Generates $m \in_R]1, R[$	Generates $n \in R$]1, R[
	// Fixed base scenario //		
2.	Sends $D(m)$ to Bob	Sends $D(n)$ to Alice	
	// Variable base scenario //		
3.	Computes <i>D</i> (<i>nm</i>)	Computes <i>D(mn)</i>	
	from $D(n)$ and m	from $D(m)$ and n	

The secret is K = D(mn)

(S.-Stein-Williams 1996) Alice and Bob agree on a real hyperelliptic curve C over a finite field \mathbb{F}_q with regulator R

	Alice	Bob	
1.	Generates $m \in_R]1, R[$	Generates $n \in R$]1, R [
	// Fixed base scenario //		
2.	Sends $D(m)$ to Bob	Sends $D(n)$ to Alice	
	// Variable base scenario //		
3.	Computes <i>D</i> (<i>nm</i>)	Computes $D(mn)$	
	from $D(n)$ and m	from $D(m)$ and n	

The secret is K = D(mn)

Same size key space and security as imaginary scenario, but slower – as this simply mimics real Jacobian arithmetic

Useful for scalar multiplication in groups where computing inverses is cheap (note: $D = (a, b) \Rightarrow -D = (a, -h - b)$)

Useful for scalar multiplication in groups where computing inverses is cheap (note: $D = (a, b) \Rightarrow -D = (a, -h - b)$)

The non-adjacent form of $n \in \mathbb{N}$ is $n = \sum_{i=1}^{l} b_i 2^{l-i}$

 $b_0 = 1$, $b_i \in \{\pm 1, 0\}$, no two consecutive b_i are non-zero

Useful for scalar multiplication in groups where computing inverses is cheap (note: $D = (a, b) \Rightarrow -D = (a, -h - b)$)

The non-adjacent form of $n \in \mathbb{N}$ is $n = \sum^{i} b_i 2^{l-i}$

 $b_0 = 1, b_i \in \{\pm 1, 0\}$, no two consecutive b_i are non-zero Idea: $2^{i+1} + 2^i = 2^{i+2} - 2^i$

Useful for scalar multiplication in groups where computing inverses is cheap (note: $D = (a, b) \Rightarrow -D = (a, -h - b)$)

The non-adjacent form of $n \in \mathbb{N}$ is $n = \sum^{i} b_i 2^{l-i}$

 $b_0 = 1, b_i \in \{\pm 1, 0\}$, no two consecutive b_i are non-zero Idea: $2^{i+1} + 2^i = 2^{i+2} - 2^i$

Properties

Useful for scalar multiplication in groups where computing inverses is cheap (note: $D = (a, b) \Rightarrow -D = (a, -h - b)$)

The non-adjacent form of $n \in \mathbb{N}$ is $n = \sum_{i=1}^{n} b_i 2^{l-i}$

 $b_0 = 1$, $b_i \in \{\pm 1, 0\}$, no two consecutive b_i are non-zero

Idea: $2^{i+1} + 2^i = 2^{i+2} - 2^i$

Properties

• For any $n \in \mathbb{N}$, NAF exists and is unique

Useful for scalar multiplication in groups where computing inverses is cheap (note: $D = (a, b) \Rightarrow -D = (a, -h - b)$)

The non-adjacent form of $n \in \mathbb{N}$ is $n = \sum_{i=1}^{n} b_i 2^{l-i}$

 $b_0 = 1$, $b_i \in \{\pm 1, 0\}$, no two consecutive b_i are non-zero

Idea: $2^{i+1} + 2^i = 2^{i+2} - 2^i$

Properties

- **•** For any $n \in \mathbb{N}$, NAF exists and is unique
- $2^{l+1} < 3n < 2^{l+2}$, so NAF length is at most one more than the binary length of n
Non-Adjacent Form

Useful for scalar multiplication in groups where computing inverses is cheap (note: $D = (a, b) \Rightarrow -D = (a, -h - b)$)

The non-adjacent form of $n \in \mathbb{N}$ is $n = \sum_{i=1}^{n} b_i 2^{l-i}$

 $b_0 = 1$, $b_i \in \{\pm 1, 0\}$, no two consecutive b_i are non-zero

Idea: $2^{i+1} + 2^i = 2^{i+2} - 2^i$

Properties

- **•** For any $n \in \mathbb{N}$, NAF exists and is unique
- $2^{l+1} < 3n < 2^{l+2}$, so NAF length is at most one more than the binary length of n
- Only 1/3 of all the digits is expected to be non-zero (as opposed to 1/2 of the ordinary bits of n)

Non-Adjacent Form

Useful for scalar multiplication in groups where computing inverses is cheap (note: $D = (a, b) \Rightarrow -D = (a, -h - b)$)

The non-adjacent form of $n \in \mathbb{N}$ is $n = \sum_{i=1}^{n} b_i 2^{l-i}$

 $b_0 = 1$, $b_i \in \{\pm 1, 0\}$, no two consecutive b_i are non-zero

Idea:
$$2^{i+1} + 2^i = 2^{i+2} - 2^i$$

Properties

- For any $n \in \mathbb{N}$, NAF exists and is unique
- $2^{l+1} < 3n < 2^{l+2}$, so NAF length is at most one more than the binary length of n
- Only 1/3 of all the digits is expected to be non-zero (as opposed to 1/2 of the ordinary bits of n)
- NAF is easily computable (almost for free)

Input: a reduced divisor *D* and a scalar $n = \sum_{i=0}^{l} b_i 2^{l-i}$ in NAF

Input: a reduced divisor *D* and a scalar $n = \sum b_i 2^{l-i}$ in NAF

i=0

Output: the reduced divisor Red(nD)

Input: a reduced divisor *D* and a scalar $n = \sum b_i 2^{l-i}$ in NAF

i=0

Output: the reduced divisor Red(nD)

Algorithm:

1. Set E = D2. For i = 1 to l do *// Double* Replace E by $E \oplus E$ *// Add* If $b_i = 1$, replace E by $E \oplus D$ If $b_i = -1$, replace E by $E \oplus (-D)$

3. Output *E*

Input: a reduced divisor *D* and a scalar $n = \sum b_i 2^{l-i}$ in NAF

i=0

Output: the reduced divisor Red(nD)

Algorithm:

1. Set E = D2. For i = 1 to l do *// Double* Replace E by $E \oplus E$ *// Add* If $b_i = 1$, replace E by $E \oplus D$ If $b_i = -1$, replace E by $E \oplus (-D)$

3. Output *E*

l doubles, l/3 adds

Input: $D \in \mathcal{R}$ and $n = \sum b_i 2^{l-i}$ in NAF

Input: $D \in \mathcal{R}$ and $n = \sum b_i 2^{l-i}$ in NAF *Output:* The divisor *E* below $n\delta(D)$

Input: $D \in \mathcal{R}$ and $n = \sum b_i 2^{l-i}$ in NAF Output: The divisor E below $n\delta(D)$ Algorithm:

1. Set E = D2. For i = 1 to l do // Double Replace E by $E \oplus E$ // Adjust Replace E by $D(2\delta(E))$ If $b_i \neq 0$ then If $b_i = 1$, set D' = DIf $b_i = -1$, set D' = -D// Add replace E by $E \oplus D'$ // Adjust Replace E by $D(\delta(E) + \delta(D'))$ **3.** Output E

Input: $D \in \mathcal{R}$ and $n = \sum b_i 2^{l-i}$ in NAF Output: The divisor E below $n\delta(D)$ Algorithm:

1. Set E = D2. For i = 1 to l do // Double Replace E by $E \oplus E$ // Adjust Replace E by $D(2\delta(E))$ If $b_i \neq 0$ then If $b_i = 1$, set D' = DIf $b_i = -1$, set D' = -D// Add replace E by $E \oplus D'$ // Adjust Replace E by $D(\delta(E) + \delta(D'))$ **3.** Output E

l doubles, l/3 adds, up to $(l + l/3) \cdot 2g = (8g/3)l$ baby steps

Input: $n \in \mathbb{N}$, $s = \lfloor n/(g+1) \rfloor$ in NAF

Input: $n \in \mathbb{N}$, $s = \lfloor n/(g+1) \rfloor$ in NAF Output: The divisor $D(n) \in \mathcal{R}$ below n

Input: $n \in \mathbb{N}$, $s = \lfloor n/(g+1) \rfloor$ in NAF Output: The divisor $D(n) \in \mathcal{R}$ below nAlgorithm:

- 1. Compute E' = D(s(g+1)) by calling the previous algorithm on inputs D_2 and s
- 2. Apply at most n s(g + 1) baby steps to E' to compute D(n)
- **3.** Output E

Input: $n \in \mathbb{N}$, $s = \lfloor n/(g+1) \rfloor$ in NAF Output: The divisor $D(n) \in \mathcal{R}$ below nAlgorithm:

- 1. Compute E' = D(s(g+1)) by calling the previous algorithm on inputs D_2 and s
- 2. Apply at most n s(g + 1) baby steps to E' to compute D(n)
- **3.** Output E
- one integer division with remainder
- all the operations from previous algorithm
- at most g baby steps

Heuristics: with probability $1 - O(q^{-1})$:

Heuristics: with probability $1 - O(q^{-1})$:

• $\delta_{i+1} - \delta_i = 1$ for $2 \le i \le r$

Heuristics: with probability $1 - O(q^{-1})$:

•
$$\delta_{i+1} - \delta_i = 1$$
 for $2 \le i \le r$

$$\delta(D' \oplus D'') = \delta(D') + \delta(D'') - \lceil g/2 \rceil$$

Heuristics: with probability $1 - O(q^{-1})$:

•
$$\delta_{i+1} - \delta_i = 1$$
 for $2 \le i \le r$

$$\delta(D' \oplus D'') = \delta(D') + \delta(D'') - \lceil g/2 \rceil$$

Consequences: with probability $1 - O(q^{-1})$:

Heuristics: with probability $1 - O(q^{-1})$:

•
$$\delta_{i+1} - \delta_i = 1$$
 for $2 \le i \le r$

$$\delta(D' \oplus D'') = \delta(D') + \delta(D'') - \lceil g/2 \rceil$$

Consequences: with probability $1 - O(q^{-1})$:

If $D_i = (a_i, b_i)$ then

 $\deg(a_i) = \deg(b_{i+1} + b_i - h) - \deg(c_i) = (g+1) - 1 = g$

Heuristics: with probability $1 - O(q^{-1})$:

•
$$\delta_{i+1} - \delta_i = 1$$
 for $2 \le i \le r$

$$\delta(D' \oplus D'') = \delta(D') + \delta(D'') - \lceil g/2 \rceil$$

Consequences: with probability $1 - O(q^{-1})$:

• If
$$D_i = (a_i, b_i)$$
 then

 $\deg(a_i) = \deg(b_{i+1} + b_i - h) - \deg(c_i) = (g+1) - 1 = g$

Relative distances (distance advancements) for both baby steps and giant steps are known and need no longer be kept track of

Variable Base Scenario

Variable Base Scenario

Eliminate all adjustment steps, at the expense of $d = \lceil g/2 \rceil$ baby steps at the beginning (independent of
the NAF length *l* of the scalars *m*, *n*)

Variable Base Scenario

Eliminate all adjustment steps, at the expense of $d = \lceil g/2 \rceil$ baby steps at the beginning (independent of

the NAF length *l* of the scalars *m*, *n*)

Fixed Base Scenario

Variable Base Scenario

Eliminate all adjustment steps, at the expense of $d = \lceil g/2 \rceil$ baby steps at the beginning (independent of

the NAF length *l* of the scalars *m*, *n*)

Fixed Base Scenario

Replace all adds by baby steps

Variable Base Scenario

Eliminate all adjustment steps, at the expense of $d = \lceil g/2 \rceil$ baby steps at the beginning (independent of

the NAF length *l* of the scalars *m*, *n*)

Fixed Base Scenario

- Replace all adds by baby steps
- Eliminate all adjustment steps, at the expense of the following pre-computation (g + 2 baby steps, l doubles):
 - D^* with $\delta(D^*) = 2^l(g+1) + g$
 - d+1 baby steps applied to D_1 to obtain D_{d+2}
 - l doubles, starting with D_{d+2} : gets to distance $2^l(g+1) + d$
 - \bullet g-d baby steps

• D_{d+3} with $\delta_{d+3} = d + g + 2$: one baby step from D_{d+2}

Input: $D \in \mathcal{R}$, $n = \sum b_i 2^{l-i}$ in NAF

Input: $D \in \mathcal{R}$, $n = \sum b_i 2^{l-i}$ in NAF *Output:* The divisor $E \in \mathcal{R}$ of distance $n\delta(D) + d$

Input: $D \in \mathcal{R}$, $n = \sum b_i 2^{l-i}$ in NAF Output: The divisor $E \in \mathcal{R}$ of distance $n\delta(D) + d$ Algorithm:

- **1.** $E_1 = D$
- 2. For i = 1 to d 1 do // d 1 baby steps Replace E_i by E_{i+1}
- **3.** // Now $E_i = E_d$ Set $D' = E_i$, $D'' = E_{i+1}$, $E = E_{i+1}$ **4.** For i = 1 to l do
- // Double Replace E by $E \oplus E$ // Add If $b_i = 1$, replace E by $E \oplus D''$ If $b_i = -1$ and g is even, replace E by $E \oplus \overline{D''}$ If $b_i = -1$ and g is odd, replace E by $E \oplus \overline{D'}$ 5. Output E

Input: $D \in \mathcal{R}$, $n = \sum b_i 2^{l-i}$ in NAF Output: The divisor $E \in \mathcal{R}$ of distance $n\delta(D) + d$ Algorithm:

- **1.** $E_1 = D$
- **2.** For i = 1 to d 1 do // d 1 baby steps Replace E_i by E_{i+1}
- **3.** // Now $E_i = E_d$ Set $D' = E_i$, $D'' = E_{i+1}$, $E = E_{i+1}$ **4.** For i = 1 to l do
- // Double Replace E by $E \oplus E$ // Add If $b_i = 1$, replace E by $E \oplus D''$ If $b_i = -1$ and g is even, replace E by $E \oplus \overline{D''}$ If $b_i = -1$ and g is odd, replace E by $E \oplus \overline{D'}$ 5. Output E

l doubles, l/3 adds, d baby steps

Improvements, Fixed Base
Pre-Computation: D^* , D_{d+3}

Pre-Computation: D^* , D_{d+3} Input: $n = \sum b_i 2^{l-i}$ in NAF

Pre-Computation: D^* , D_{d+3} Input: $n = \sum b_i 2^{l-i}$ in NAF Output: The divisor $E = D(n) \in \mathcal{R}$ of distance n

Pre-Computation: D^* , D_{d+3} Input: $n = \sum b_i 2^{l-i}$ in NAF Output: The divisor $E = D(n) \in \mathcal{R}$ of distance nAlgorithm:

- **1.** Set $E = D_{d+3}$
- 2. For i = 1 to l do

// DoubleReplace E by $E \oplus E$ // Baby StepIf $b_i = 1$ then apply a baby step to EIf $b_i = -1$ then apply a backwardbaby step to E

- 3. // Now at distance $2^{l+1} + n + d$ Compute $D = E \oplus (-D^*)$
- 4. Output *D*

Pre-Computation: D^* , D_{d+3} Input: $n = \sum b_i 2^{l-i}$ in NAF Output: The divisor $E = D(n) \in \mathcal{R}$ of distance nAlgorithm:

- **1.** Set $E = D_{d+3}$
- 2. For i = 1 to l do

// DoubleReplace E by $E \oplus E$ // Baby StepIf $b_i = 1$ then apply a baby step to EIf $b_i = -1$ then apply a backwardbaby step to E

- 3. // Now at distance $2^{l+1} + n + d$ Compute $D = E \oplus (-D^*)$
- 4. Output D

l doubles, one add, l/3 baby steps

Operation Count	Doubles	Adds	Baby Steps
Imaginary	l	l/3	_
Real, Variable Base	l	l/3	d
Real, Fixed Base	l	1	l/3

Operation Count	Doubles	Adds	Baby Steps
Imaginary	l	l/3	_
Real, Variable Base	l	l/3	d
Real, Fixed Base	l	1	l/3

Naive Analysis:

Operation Count	Doubles	Adds	Baby Steps
Imaginary	l	l/3	_
Real, Variable Base	l	l/3	d
Real, Fixed Base	l	1	l/3

Naive Analysis:

Real variable base scenario has about the same speed as imaginary model (neglecting the cost of baby steps)

Operation Count	Doubles	Adds	Baby Steps
Imaginary	l	l/3	_
Real, Variable Base	l	l/3	d
Real, Fixed Base	l	1	l/3

Naive Analysis:

- Real variable base scenario has about the same speed as imaginary model (neglecting the cost of baby steps)
- Real model fixed base scenario is about 25 percent faster than imaginary model (factor 3/4)

Operation Count	Doubles	Adds	Baby Steps
Imaginary	l	l/3	_
Real, Variable Base	l	l/3	d
Real, Fixed Base	l	1	l/3

Naive Analysis:

- Real variable base scenario has about the same speed as imaginary model (neglecting the cost of baby steps)
- Real model fixed base scenario is about 25 percent faster than imaginary model (factor 3/4)
- Key agreement is about 12.5 percent faster (factor 7/8)

Operation Count	Doubles	Adds	Baby Steps
Imaginary	l	l/3	_
Real, Variable Base	l	l/3	d
Real, Fixed Base	l	1	l/3

Naive Analysis:

- Real variable base scenario has about the same speed as imaginary model (neglecting the cost of baby steps)
- Real model fixed base scenario is about 25 percent faster than imaginary model (factor 3/4)
- Key agreement is about 12.5 percent faster (factor 7/8)

Supported by numerical data, but not quite fair comparison: imaginary model could use a "point" divisor $D = P - \infty$ as base divisor (Katagi, Kitamura, Akishita & Takagi 2005)

Imaginary Model – Jacobian DLP

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in the divisor class of nD, find n

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in the divisor class of nD, find n

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in the divisor class of nD, find n

Real Model – Infrastructure DLP

• Given a divisor $D \in \mathcal{R}$ and the divisor $E \in \mathcal{R}$ below $n\delta(D)$, find n

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in the divisor class of nD, find n

- Given a divisor $D \in \mathcal{R}$ and the divisor $E \in \mathcal{R}$ below $n\delta(D)$, find n
- Given the divisor $D(n) \in \mathcal{R}$ below n, find suitable n

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in the divisor class of nD, find n

- Given a divisor $D \in \mathcal{R}$ and the divisor $E \in \mathcal{R}$ below $n\delta(D)$, find n
- Given the divisor $D(n) \in \mathcal{R}$ below n, find suitable n
- Given a divisor $D \in \mathcal{R}$, find $\delta(D)$

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in the divisor class of nD, find n

- Given a divisor $D \in \mathcal{R}$ and the divisor $E \in \mathcal{R}$ below $n\delta(D)$, find n
- Given the divisor $D(n) \in \mathcal{R}$ below n, find suitable n
- Given a divisor $D \in \mathcal{R}$, find $\delta(D)$
- Given a reduced principal ideal in the coordinate ring of C, find a generator (*Principal Ideal Problem*)

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in the divisor class of nD, find n

Real Model – Infrastructure DLP

- Given a divisor $D \in \mathcal{R}$ and the divisor $E \in \mathcal{R}$ below $n\delta(D)$, find n
- Given the divisor $D(n) \in \mathcal{R}$ below n, find suitable n
- Given a divisor $D \in \mathcal{R}$, find $\delta(D)$
- Given a reduced principal ideal in the coordinate ring of C, find a generator (*Principal Ideal Problem*)

Security of both DLPs seems to be the same - exponential

Idea: Replace giant steps by baby steps where possible

Idea: Replace giant steps by baby steps where possible

Idea: Replace giant steps by baby steps where possible

Present and Future Work

 NUCOMP – exact operation count and comparison with Cantor giant steps

Idea: Replace giant steps by baby steps where possible

- NUCOMP exact operation count and comparison with Cantor giant steps
- Explicit formulas for low genus giant steps, real model

Idea: Replace giant steps by baby steps where possible

- NUCOMP exact operation count and comparison with Cantor giant steps
- Explicit formulas for low genus giant steps, real model
- Explicit formulas for low genus giant steps, based on NUCOMP, both models

Idea: Replace giant steps by baby steps where possible

- NUCOMP exact operation count and comparison with Cantor giant steps
- Explicit formulas for low genus giant steps, real model
- Explicit formulas for low genus giant steps, based on NUCOMP, both models
- Use the baby step giant step framework to to speed up the DLP in \mathcal{R} or in \mathcal{J} ? And to find R or $|\mathcal{J}|$?

Idea: Replace giant steps by baby steps where possible

- NUCOMP exact operation count and comparison with Cantor giant steps
- Explicit formulas for low genus giant steps, real model
- Explicit formulas for low genus giant steps, based on NUCOMP, both models
- Use the baby step giant step framework to to speed up the DLP in \mathcal{R} or in \mathcal{J} ? And to find R or $|\mathcal{J}|$?
- Structural relationship between \mathcal{R} and \mathcal{J} ?

Idea: Replace giant steps by baby steps where possible

- NUCOMP exact operation count and comparison with Cantor giant steps
- Explicit formulas for low genus giant steps, real model
- Explicit formulas for low genus giant steps, based on NUCOMP, both models
- Use the baby step giant step framework to to speed up the DLP in \mathcal{R} or in \mathcal{J} ? And to find R or $|\mathcal{J}|$?
- Structural relationship between \mathcal{R} and \mathcal{J} ?
- Special types of curves?

Some General References

- H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercouteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman & Hall/CRC, Boca Raton (Florida), 2006
- M. J. Jacobson, Jr., A. J. Menezes and A. Stein, Hyperelliptic curves and cryptography, in *High Primes and Misdemeanors: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, Fields Institute Communications* 41, American Mathematical Society, Providence (Rhode Island) 2004, 255-282
- 3. M. J. Jacobson, Jr., R. Scheidler and A. Stein, Cryptographic protocols on real hyperelliptic curves. *Advances in Mathematics of Communications* **1** (2007), 197-221
- M. J. Jacobson, Jr., R. Scheidler and A. Stein, Fast arithmetic on hyperelliptic curves via continued fraction expansions. *Advances in Coding Theory and Cryptology*, *Series on Coding Theory and Cryptology* 2, World Scientific Publishing Co. Pte. Ltd., Hackensack (New Jersey) 2007, 201-244
- A. J. Menezes, Y.-H. Wu and R. J. Zuccherato, An elementary introduction to hyperelliptic curves, in *Algebraic Aspects of Cryptography*, *Algorithms and Computation in Mathematics* 3, Springer, Berlin (Germany) 1998, 155-178
- R. Scheidler, A. Stein and H. C. Williams, Key exchange in real quadratic congruence function fields. *Designs, Codes and Cryptography* 7 (1996), 153-174