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C : y2 + h(x)y = f(x)

f, h ∈ Fq[x]; h = 0 if q odd;
absolutely irreducible; non-singular; of genus g

Imaginary Model
f monic and deg(f) = 2g + 1

deg(h) ≤ g if q even

Real Model
If q odd: f monic and deg(f) = 2g + 2

If q even: h monic, deg(h) = g + 1 and
deg(f) ≤ 2g + 1 or
deg(f) = 2g + 2, sgn(f) = e2 + e (e ∈ F

∗

q)
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Degree 0 Divisors ( C Imaginary)
J = JacFq

(C): degree zero divisor class group of C over Fq

Representation of degree zero divisors : D = (s; a, b):

s, a, b ∈ Fq[x], s and a monic
s and a unique, b (mod a) unique
a | f + hb − b2

D semi-reduced : s = 1
D reduced : s = 1 and deg(a) ≤ g.

Theorem : Every class [D] ∈ J has a unique reduced
representative Red(D)

Arithmetic in J via reduced representatives (giant steps ):

Red(D′) ⊕ Red(D′′)
def
= Red(D′ + D′′)
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Giant Step Arithmetic
Cantor’s algorithm (Cantor 1987)
divisor addition with subsequent reduction steps
17g2 + O(g) operations in Fq (Stein 2001)

NUCOMP (Shanks-Atkin 1989, van der Poorten 2003)
Cg2 operation in Fq, C < 17

Explicit formulas for low genus curves:
Imaginary: g = 2, 3, 4
www.hyperelliptic.org/EFD/

Real: g = 2, affine coordinates
Erickson-Jacobson-Shang-Shen-Stein, WAIFI 2007
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Alice and Bob agree on q, C imaginary, a reduced divisor D

Alice Bob

1. Generates m ∈R ]1, ord(D)[ Generates n ∈R ]1, ord(D)[

// Fixed base scenario //
2. Sends Dm = Red(mD) to Bob Sends Dn = Red(nD) to Alice

// Variable base scenario //
3. Computes K = Red(mDn) Computes K = Red(nDm)

The secret is the reduced divisor K = Red(mnD)

〈D〉 ≈ |J | ≈ qg (exponentially large in the size of C)

DLP is exponential for small g

(g = 2 is best; DLP complexity O(q) = O(
√

|J |))
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Fact: Reduced representatives of divisor classes are no
longer unique
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Degree 0 Divisors ( C Real)
Representation of degree zero divisors : D = (s; a, b; v):

s, a, b as before
v ∈ Z

Semi-reduced and reduced defined as before – no
restrictions on v

Fact: Reduced representatives of divisor classes are no
longer unique

Theorem : Every class [D] ∈ J has a unique reduced
representative Red’(D) = (a, b, v) where v is restricted to a
suitable interval of length g − deg(a) + 1

(Paulus-Rück 1999; Galbraith-Harrison-Mireless 2008)

Could use this again for arithmetic in J
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Compute D′ ⊕ D′′ = Red(D′ + D′′) as in the imaginary
case using a giant step — Cg2 operations in Fq

Apply further reduction steps to until Red’(D) is
reached — up to C ′g2 operations in Fq

(C + C ′)g2 field operations — slower than imaginary
Jacobian arithmetic

Henceforth, let C be real. Then |J | = HR where

H is the order of the ideal class group of the coordinate
ring of C; usually very small

R is the regulator of C, i.e. the order of the divisor class
of ∞1 −∞2 where ∞1 and ∞2 are the two points at
infinity; usually R ≈ |J | ≈ qg
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Infrastructure :

R = {D | D is a reduced principal divisor with 0 ≤ −v < R}

Properties

R is finite and of cardinality ≈ R ≈ qg

R is ordered by distance: δ(D) = −v, so

R = {D1 = 0, D2, . . . , Dr}, Di+1 = Di − div
(

ai + y

bi

)

0 = δ1 < δ2 < · · · < δr < R

δ1 = 0, δ2 = g + 1, 1 ≤ δi+1 − δi ≤ g for 2 ≤ i ≤ r − 1

A reduction step moves from Di to Di+1 and is also
known as a baby step — O(g) operations in Fq

Dmr+i = Di + mR(∞1 −∞2) for m ∈ N and 1 ≤ i ≤ r
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R is “almost” an Abelian group under giant steps:

Closure: D′, D′′ ∈ R ⇒ D′ ⊕ D′′ ∈ R

Identity: D1 = 0 = (1, 0; 0)

Inverses: The inverse of D = (a, b; v) is
−D = (a,−h − b;− deg(a) − v)

Commutativity: D′ ⊕ D′′ = D′′ ⊕ D′

“Almost” associative:

δ(D′ ⊕ D′′) = δ(D′) + δ(D′′) − d with 0 ≤ d ≤ 2g

So D ⊕ (D′ ⊕ D′′) is “close to” (D ⊕ D′) ⊕ D′′

(within 4g in distance)
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More on Infrastructure
If D = (a, b; v) ∈ R, then (a, b) determines v = −δ(D)
uniquely and vice versa. So we can write D = (a, b)

Given D = (a, b) ∈ R, it is computationally infeasible to
find δ(D) — infrastructure discrete log problem

Divisors of Fixed Distance: For n ∈ [0, R), the divisor
D(n) ∈ R below n is the divisor Di ∈ R such that

δi ≤ n < δi+1

Key Point: n D(n) easy, D  δ(D) hard
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Key Agreement in R

(S.-Stein-Williams 1996) Alice and Bob agree on a real
hyperelliptic curve C over a finite field Fq with regulator R

Alice Bob

1. Generates m ∈R ]1, R[ Generates n ∈R ]1, R[

// Fixed base scenario //
2. Sends D(m) to Bob Sends D(n) to Alice

// Variable base scenario //
3. Computes D(nm) Computes D(mn)

from D(n) and m from D(m) and n

The secret is K = D(mn)

Same size key space and security as imaginary scenario,
but slower – as this simply mimics real Jacobian arithmetic
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Useful for scalar multiplication in groups where computing
inverses is cheap (note: D = (a, b) ⇒ −D = (a,−h − b))

The non-adjacent form of n ∈ N is n =
l

∑

i=0

bi2
l−i

b0 = 1, bi ∈ {±1, 0}, no two consecutive bi are non-zero

Idea: 2i+1 + 2i = 2i+2 − 2i

Properties

For any n ∈ N, NAF exists and is unique
2l+1 < 3n < 2l+2, so NAF length is at most one more
than the binary length of n
Only 1/3 of all the digits is expected to be non-zero (as
opposed to 1/2 of the ordinary bits of n)
NAF is easily computable (almost for free)
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∑
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bi2
l−i in NAF

Output: the reduced divisor Red(nD)

Algorithm:

1. Set E = D

2. For i = 1 to l do
// Double Replace E by E ⊕ E

// Add If bi = 1, replace E by E ⊕ D
If bi = −1, replace E by E ⊕ (−D)
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Scalar Multiplication in J

Input: a reduced divisor D and a scalar n =

l
∑

i=0

bi2
l−i in NAF

Output: the reduced divisor Red(nD)

Algorithm:

1. Set E = D

2. For i = 1 to l do
// Double Replace E by E ⊕ E

// Add If bi = 1, replace E by E ⊕ D
If bi = −1, replace E by E ⊕ (−D)

3. Output E

l doubles, l/3 adds
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Variable Base Scalar Mult. in R

Input: D ∈ R and n =
∑

bi2
l−i in NAF

Output: The divisor E below nδ(D)
Algorithm:

1. Set E = D
2. For i = 1 to l do

// Double Replace E by E ⊕ E
// Adjust Replace E by D(2δ(E))
If bi 6= 0 then

If bi = 1, set D′ = D
If bi = −1, set D′ = −D
// Add replace E by E ⊕ D′

// Adjust Replace E by D(δ(E) + δ(D′))
3. Output E
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Variable Base Scalar Mult. in R

Input: D ∈ R and n =
∑

bi2
l−i in NAF

Output: The divisor E below nδ(D)
Algorithm:

1. Set E = D
2. For i = 1 to l do

// Double Replace E by E ⊕ E
// Adjust Replace E by D(2δ(E))
If bi 6= 0 then

If bi = 1, set D′ = D
If bi = −1, set D′ = −D
// Add replace E by E ⊕ D′

// Adjust Replace E by D(δ(E) + δ(D′))
3. Output E

l doubles, l/3 adds, up to (l + l/3) · 2g = (8g/3)l baby steps
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Fixed Base Scalar Mult. in R

Input: n ∈ N, s = ⌊n/(g + 1)⌋ in NAF
Output: The divisor D(n) ∈ R below n

Algorithm:

1. Compute E′ = D(s(g + 1) by calling the previous
algorithm on inputs D2 and s

2. Apply at most n − s(g + 1) baby steps to E′ to compute
D(n)

3. Output E

– p. 15



Fixed Base Scalar Mult. in R

Input: n ∈ N, s = ⌊n/(g + 1)⌋ in NAF
Output: The divisor D(n) ∈ R below n

Algorithm:

1. Compute E′ = D(s(g + 1) by calling the previous
algorithm on inputs D2 and s

2. Apply at most n − s(g + 1) baby steps to E′ to compute
D(n)

3. Output E

one integer division with remainder

all the operations from previous algorithm

at most g baby steps
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Heuristics : with probability 1 − O(q−1):

δi+1 − δi = 1 for 2 ≤ i ≤ r

δ(D′ ⊕ D′′) = δ(D′) + δ(D′′) − ⌈g/2⌉

Consequences: with probability 1 − O(q−1):

If Di = (ai, bi) then

deg(ai) = deg(bi+1 + bi − h) − deg(ci) = (g + 1) − 1 = g
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Heuristics, Real Model
Heuristics : with probability 1 − O(q−1):

δi+1 − δi = 1 for 2 ≤ i ≤ r

δ(D′ ⊕ D′′) = δ(D′) + δ(D′′) − ⌈g/2⌉

Consequences: with probability 1 − O(q−1):

If Di = (ai, bi) then

deg(ai) = deg(bi+1 + bi − h) − deg(ci) = (g + 1) − 1 = g

Relative distances (distance advancements) for both
baby steps and giant steps are known and need no
longer be kept track of
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the NAF length l of the scalars m,n)
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Improvements, Infrastructure
Variable Base Scenario

Eliminate all adjustment steps, at the expense of
d = ⌈g/2⌉ baby steps at the beginning (independent of
the NAF length l of the scalars m,n)

Fixed Base Scenario

Replace all adds by baby steps
Eliminate all adjustment steps, at the expense of the
following pre-computation (g + 2 baby steps, l doubles):

D∗ with δ(D∗) = 2l(g + 1) + g
d + 1 baby steps applied to D1 to obtain Dd+2

l doubles, starting with Dd+2: gets to distance
2l(g + 1) + d
g − d baby steps

Dd+3 with δd+3 = d + g + 2: one baby step from Dd+2
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Input: D ∈ R, n =

∑

bi2
l−i in NAF

– p. 18



Improvements, Variable Base
Input: D ∈ R, n =

∑

bi2
l−i in NAF

Output: The divisor E ∈ R of distance nδ(D) + d
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Improvements, Variable Base
Input: D ∈ R, n =

∑

bi2
l−i in NAF

Output: The divisor E ∈ R of distance nδ(D) + d
Algorithm:
1. E1 = D
2. For i = 1 to d − 1 do // d − 1 baby steps

Replace Ei by Ei+1

3. // Now Ei = Ed Set D′ = Ei, D′′ = Ei+1, E = Ei+1

4. For i = 1 to l do
// Double Replace E by E ⊕ E
// Add If bi = 1, replace E by E ⊕ D′′

If bi = −1 and g is even, replace E by E ⊕D′′

If bi = −1 and g is odd, replace E by E ⊕ D′

5. Output E
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Improvements, Variable Base
Input: D ∈ R, n =

∑

bi2
l−i in NAF

Output: The divisor E ∈ R of distance nδ(D) + d
Algorithm:
1. E1 = D
2. For i = 1 to d − 1 do // d − 1 baby steps

Replace Ei by Ei+1

3. // Now Ei = Ed Set D′ = Ei, D′′ = Ei+1, E = Ei+1

4. For i = 1 to l do
// Double Replace E by E ⊕ E
// Add If bi = 1, replace E by E ⊕ D′′

If bi = −1 and g is even, replace E by E ⊕D′′

If bi = −1 and g is odd, replace E by E ⊕ D′

5. Output E

l doubles, l/3 adds, d baby steps
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Pre-Computation: D∗, Dd+3

Input: n =
∑

bi2
l−i in NAF

Output: The divisor E = D(n) ∈ R of distance n
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Improvements, Fixed Base
Pre-Computation: D∗, Dd+3

Input: n =
∑

bi2
l−i in NAF

Output: The divisor E = D(n) ∈ R of distance n
Algorithm:

1. Set E = Dd+3

2. For i = 1 to l do
// Double Replace E by E ⊕ E
// Baby Step If bi = 1 then apply a baby step to E

If bi = −1 then apply a backward
baby step to E

3. // Now at distance 2l+1 + n + d
Compute D = E ⊕ (−D∗)

4. Output D
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Improvements, Fixed Base
Pre-Computation: D∗, Dd+3

Input: n =
∑

bi2
l−i in NAF

Output: The divisor E = D(n) ∈ R of distance n
Algorithm:

1. Set E = Dd+3

2. For i = 1 to l do
// Double Replace E by E ⊕ E
// Baby Step If bi = 1 then apply a baby step to E

If bi = −1 then apply a backward
baby step to E

3. // Now at distance 2l+1 + n + d
Compute D = E ⊕ (−D∗)

4. Output D

l doubles, one add, l/3 baby steps
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Real, Variable Base l l/3 d

Real, Fixed Base l 1 l/3
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Naive Analysis:

Real variable base scenario has about the same speed
as imaginary model (neglecting the cost of baby steps)
Real model fixed base scenario is about 25 percent
faster than imaginary model (factor 3/4)
Key agreement is about 12.5 percent faster (factor 7/8)
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Analysis

Operation Count Doubles Adds Baby Steps
Imaginary l l/3 −

Real, Variable Base l l/3 d

Real, Fixed Base l 1 l/3

Naive Analysis:

Real variable base scenario has about the same speed
as imaginary model (neglecting the cost of baby steps)
Real model fixed base scenario is about 25 percent
faster than imaginary model (factor 3/4)
Key agreement is about 12.5 percent faster (factor 7/8)

Supported by numerical data, but not quite fair comparison:
imaginary model could use a “point” divisor D = P −∞ as
base divisor (Katagi, Kitamura, Akishita & Takagi 2005)
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Given a divisor D ∈ R and the divisor E ∈ R below
nδ(D), find n

Given the divisor D(n) ∈ R below n, find suitable n

Given a divisor D ∈ R, find δ(D)

Given a reduced principal ideal in the coordinate ring of
C, find a generator (Principal Ideal Problem)
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Discrete Logarithm Problem

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in
the divisor class of nD, find n

Real Model – Infrastructure DLP

Given a divisor D ∈ R and the divisor E ∈ R below
nδ(D), find n

Given the divisor D(n) ∈ R below n, find suitable n

Given a divisor D ∈ R, find δ(D)

Given a reduced principal ideal in the coordinate ring of
C, find a generator (Principal Ideal Problem)

Security of both DLPs seems to be the same – exponential
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Summary and Further Research
Idea: Replace giant steps by baby steps where possible

Present and Future Work

NUCOMP – exact operation count and comparison with
Cantor giant steps

Explicit formulas for low genus giant steps, real model

Explicit formulas for low genus giant steps, based on
NUCOMP, both models

Use the baby step giant step framework to to speed up
the DLP in R or in J ? And to find R or |J |?

Structural relationship between R and J ?

Special types of curves?
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