Real Hyperelliptic Curves

Renate Scheidler

rscheidl@math.ucalgary.ca

Fields Institute Workshop on New Directions in Cryptography, June 25-27, 2008, University of Ottawa

Joint work with

Joint work with
Mike Jacobson (University of Calgary) and **Andreas Stein** (University of Oldenburg)

Research supported in part by NSERC of Canada

Hyperelliptic Curves over \mathbb{F}_q

Hyperelliptic Curves over \mathbb{F}_q

$$
C: \quad y^2 \ + \ h(x)y \ = \ f(x)
$$

Hyperelliptic Curves over $\mathbb F$ $\, q \,$

$$
C: y^2 + h(x)y = f(x)
$$

 $f, h \in \mathbb{F}_q[x]$; $h=0$ if q odd; absolutely irreducible; non-singular; of $genus\ g$

Hyperelliptic Curves over $\mathbb F$ $\, q \,$

$$
C: y^2 + h(x)y = f(x)
$$

 $f, h \in \mathbb{F}_q[x]$; $h=0$ if q odd; absolutely irreducible; non-singular; of $genus\ g$

Imaginary Model

$$
\bullet \quad f \text{ monic and } \deg(f) = 2g + 1
$$

•
$$
\deg(h) \leq g
$$
 if q even

Hyperelliptic Curves over $\mathbb F$ $\, q \,$

$$
C: y^2 + h(x)y = f(x)
$$

 $f, h \in \mathbb{F}_q[x]$; $h=0$ if q odd;

absolutely irreducible; non-singular; of $genus\ g$

Imaginary Model

- f monic and $\deg(f) = 2g + 1$
- $\deg(h)\leq g$ if q even

Real Model

- If q odd: f monic and $deg(f) = 2g + 2$
- If q even: h monic, $\deg(h) = g+1$ and
	- $\deg(f) \leq 2g + 1$ or

 $deg(f) = 2g + 2$, sgn $(f) = e$ 2 e^2+e^2 ($e\in\mathbb{F}_q^*$ $_q^*)$

 $\mathcal{J}=$ Jac \mathbb{F}_q $\Big($ $C)$: degree zero divisor class group of C over \mathbb{F}_q

 $\mathcal{J}=$ Jac \mathbb{F}_q $\Big($ $C)$: degree zero divisor class group of C over \mathbb{F}_q

Representation of degree zero divisors: $D = (s; a, b)$:

- $s,a,b\in\mathbb{F}_q[x]$, s and a monic
- s and a unique, b (mod a) unique

$$
\bullet \quad a \mid f + hb - b^2
$$

 $\mathcal{J}=$ Jac \mathbb{F}_q $\Big($ $C)$: degree zero divisor class group of C over \mathbb{F}_q

Representation of degree zero divisors: $D = (s; a, b)$:

- $s,a,b\in\mathbb{F}_q[x]$, s and a monic
- s and a unique, b (mod a) unique

$$
\bullet \quad a \mid f + hb - b^2
$$

 D semi-reduced: $s = 1$
 D reduced: $s = 1$ and d D reduced: $s = 1$ and $deg(a) \leq g$.

 $\mathcal{J}=$ Jac \mathbb{F}_q $\Big($ $C)$: degree zero divisor class group of C over \mathbb{F}_q

Representation of degree zero divisors: $D = (s; a, b)$:

- $s,a,b\in\mathbb{F}_q[x]$, s and a monic
- s and a unique, b (mod a) unique

$$
\bullet \quad a \mid f + hb - b^2
$$

 D semi-reduced: $s = 1$
 D reduced: $s = 1$ and d D reduced: $s = 1$ and $deg(a) \leq g$.

Theorem: Every class [D] [∈] ^J has ^a unique reduced representative $\mathsf{Red}(D)$

 $\mathcal{J}=$ Jac \mathbb{F}_q $\Big($ $C)$: degree zero divisor class group of C over \mathbb{F}_q

Representation of degree zero divisors: $D = (s; a, b)$:

- $s,a,b\in\mathbb{F}_q[x]$, s and a monic
- s and a unique, b (mod a) unique

$$
\bullet \quad a \mid f + hb - b^2
$$

 D semi-reduced: $s = 1$
 D reduced: $s = 1$ and d D reduced: $s = 1$ and $deg(a) \leq g$.

Theorem: Every class [D] [∈] ^J has ^a unique reduced representative $\mathsf{Red}(D)$

Arithmetic in $\mathcal J$ via reduced representatives (**giant steps**): $\mathsf{Red}(D'$ $\theta \in \text{Red}(D'') \stackrel{\text{def}}{=} \text{Red}(D'+D'')$

Cantor's algorithm (Cantor 1987) divisor addition with subsequent reduction steps $17g$ 2 $^2+O(g)$ operations in \mathbb{F}_q (Stein 2001)

- Cantor's algorithm (Cantor 1987) divisor addition with subsequent reduction steps $17g$ 2 $^2+O(g)$ operations in \mathbb{F}_q (Stein 2001)
- NUCOMP (Shanks-Atkin 1989, van der Poorten 2003) Cg^2 operation in \mathbb{F}_q , $\; C < 17$

- Cantor's algorithm (Cantor 1987) divisor addition with subsequent reduction steps $17g$ 2 $^2+O(g)$ operations in \mathbb{F}_q (Stein 2001)
- NUCOMP (Shanks-Atkin 1989, van der Poorten 2003) Cg^2 operation in \mathbb{F}_q , $\; C < 17$
- Explicit formulas for low genus curves:

- Cantor's algorithm (Cantor 1987) divisor addition with subsequent reduction steps $17g$ 2 $^2+O(g)$ operations in \mathbb{F}_q (Stein 2001)
- NUCOMP (Shanks-Atkin 1989, van der Poorten 2003) Cg^2 operation in \mathbb{F}_q , $\; C < 17$
- Explicit formulas for low genus curves:
	- Imaginary: $g = 2, 3, 4$ www.hyperelliptic.org/EFD/

- Cantor's algorithm (Cantor 1987) divisor addition with subsequent reduction steps $17g$ 2 $^2+O(g)$ operations in \mathbb{F}_q (Stein 2001)
- NUCOMP (Shanks-Atkin 1989, van der Poorten 2003) Cg^2 operation in \mathbb{F}_q , $\; C < 17$
- Explicit formulas for low genus curves:
	- Imaginary: $g = 2, 3, 4$ www.hyperelliptic.org/EFD/
	- Real: $g = 2$, affine coordinates Erickson-Jacobson-Shang-Shen-Stein, WAIFI 2007

Alice and Bob agree on $q, \, C$ imaginary, a reduced divisor D

Alice and Bob agree on q, C imaginary, a reduced divisor D

Alice and Bob agree on q, C imaginary, a reduced divisor D

The secret is the reduced divisor $K=\,$ $= \textsf{Red}(mnD)$

Alice and Bob agree on q, C imaginary, a reduced divisor D

The secret is the reduced divisor $K=\,$ $= \textsf{Red}(mnD)$

 $\langle D \rangle \approx |{\cal J}| \approx q^{g}$ (exponentially large in the size of C)

Alice and Bob agree on q, C imaginary, a reduced divisor D

The secret is the reduced divisor $K=\,$ $= \textsf{Red}(mnD)$

 $\langle D \rangle \approx |{\cal J}| \approx q^{g}$ (exponentially large in the size of C)

DLP is exponential for small g $(g=2$ is best; DLP complexity $O(q) = O(\sqrt{|\mathcal{J}|}))$

Representation of degree zero divisors: $D = (s; a, b; v)$:

- s,a,b as before
- $v\in\mathbb{Z}$

Representation of degree zero divisors: $D = (s; a, b; v)$:

 s,a,b as before

 $v\in\mathbb{Z}$

Semi-reduced and reduced defined as before – norestrictions on v

Representation of degree zero divisors: $D = (s; a, b; v)$:

 s,a,b as before

 $v\in\mathbb{Z}$

Semi-reduced and reduced defined as before – norestrictions on v

Fact: Reduced representatives of divisor classes are nolonger unique

Representation of degree zero divisors: $D = (s; a, b; v)$:

 s,a,b as before

 $v\in\mathbb{Z}$

Semi-reduced and reduced defined as before – norestrictions on v

Fact: Reduced representatives of divisor classes are nolonger unique

Theorem: Every class $[D]$ ∈ *J* has a unique reduced
representative Rad'(D) representative $\mathsf{Red}^{\prime}(D) = (a,b,v)$ where v is restricted to a suitable interval of length $g-\deg(a)+1$ $-\deg(a)+1$

(Paulus-Rück 1999; Galbraith-Harrison-Mireless 2008)

Representation of degree zero divisors: $D = (s; a, b; v)$:

 s,a,b as before

 $v\in\mathbb{Z}$

Semi-reduced and reduced defined as before – norestrictions on v

Fact: Reduced representatives of divisor classes are nolonger unique

Theorem: Every class $[D]$ ∈ *J* has a unique reduced
representative Rad'(D) representative $\mathsf{Red}^{\prime}(D) = (a,b,v)$ where v is restricted to a suitable interval of length $g-\deg(a)+1$ $-\deg(a)+1$

(Paulus-Rück 1999; Galbraith-Harrison-Mireless 2008)

Could use this again for arithmetic in $\mathcal J$

Compute $D'\oplus D''=$ $\frac{1}{2}$. $\frac{1}{2}$ $= \mathsf{Red}(D' + D'')$ as in the imaginary case using a giant step — Cg^2 operations in \mathbb{F}_q

- Compute $D'\oplus D''=$ $\frac{1}{2}$. $\frac{1}{2}$ $= \mathsf{Red}(D' + D'')$ as in the imaginary case using a giant step — Cg^2 operations in \mathbb{F}_q
- Apply further reduction steps to until $\mathsf{Red}^{\scriptscriptstyle \bullet}(D)$ is reached — up to $C^{\prime}g$ 2 operations in \mathbb{F}_q

- Compute $D'\oplus D''=$ $\frac{1}{2}$. $\frac{1}{2}$ $= \mathsf{Red}(D' + D'')$ as in the imaginary case using a giant step — Cg^2 operations in \mathbb{F}_q
- Apply further reduction steps to until $\mathsf{Red}^{\scriptscriptstyle \bullet}(D)$ is reached — up to $C^{\prime}g$ 2 operations in \mathbb{F}_q

 $(C+C'$ Jacobian arithmetic $\big)g$ 2 field operations — slower than imaginary

- Compute $D'\oplus D''=$ $\frac{1}{2}$. $\frac{1}{2}$ $= \mathsf{Red}(D' + D'')$ as in the imaginary case using a giant step — Cg^2 operations in \mathbb{F}_q
- Apply further reduction steps to until $\mathsf{Red}^{\scriptscriptstyle \bullet}(D)$ is reached — up to $C^{\prime}g$ 2 operations in \mathbb{F}_q

 $(C+C'$ Jacobian arithmetic $\big)g$ 2 field operations — slower than imaginary

Henceforth, let C be real. Then $|\mathcal{J}|$: = $= HR$ where

- Compute $D'\oplus D''=$ $\frac{1}{2}$. $\frac{1}{2}$ $= \mathsf{Red}(D' + D'')$ as in the imaginary case using a giant step — Cg^2 operations in \mathbb{F}_q
- Apply further reduction steps to until $\mathsf{Red}^{\scriptscriptstyle \bullet}(D)$ is reached — up to $C^{\prime}g$ 2 operations in \mathbb{F}_q

 $(C+C'$ Jacobian arithmetic $\big)g$ 2 field operations — slower than imaginary

Henceforth, let C be real. Then $|\mathcal{J}|$: = $= HR$ where

 H is the order of the ideal class group of the coordinate F_{max} of G_{max} ring of C ; usually very small
Computing Red' (D)

- Compute $D'\oplus D''=$ $\frac{1}{2}$. $\frac{1}{2}$ $= \mathsf{Red}(D' + D'')$ as in the imaginary case using a giant step — Cg^2 operations in \mathbb{F}_q
- Apply further reduction steps to until $\mathsf{Red}^{\scriptscriptstyle \bullet}(D)$ is reached — up to $C^{\prime}g$ 2 operations in \mathbb{F}_q

 $(C+C'$ Jacobian arithmetic $\big)g$ 2 field operations — slower than imaginary

Henceforth, let C be real. Then $|\mathcal{J}|$: = $= HR$ where

- H is the order of the ideal class group of the coordinate F_{max} of G_{max} ring of C ; usually very small
- R is the regulator of C , i.e. the order of the divisor class $\mathsf{of} \ \infty_1 - \infty_2$ infinit \cdots uou $_2$ where ∞_1 $_1$ and ∞_2 $_{\rm 2}$ are the two points at infinity; usually $R \approx |\mathcal{J}| \approx q^g$

Infrastructure:

 $\mathcal{R}=$ $\{D \mid D$ is a reduced *principal* divisor with $0 \leq -v < R\}$

Infrastructure:

 $\mathcal{R}=$ $\{D \mid D$ is a reduced *principal* divisor with $0 \leq -v < R\}$

Properties

 $\mathcal{R}=$ $\{D \mid D$ is a reduced *principal* divisor with $0 \leq -v < R\}$

Properties

 ${\cal R}$ is finite and of cardinality $\approx R\approx q^g$

 $\mathcal{R}=$ $\{D \mid D$ is a reduced *principal* divisor with $0 \leq -v < R\}$

Properties

- $\cal R$ is finite and of cardinality $\approx R \approx q^g$
- $\cal R$ is ordered by *distance*: $\delta(D)$ = $-v$, so

 $\mathcal{R}\,$ $=$ $\left\{ \right.$ D_1 $=\mathbf{0}, D_2, \ldots, D_r$ $_{r}\},\quad D_{i+1}$ $=D_i$ − $-\operatorname{\mathsf{div}}\bigg($ $\,a$ $\frac{i}{2}$ $\, + \,$ $\left(\frac{+y}{b_i}\right)$

 $\mathcal{R}=$ $\{D \mid D$ is a reduced *principal* divisor with $0 \leq -v < R\}$

Properties

- $\cal R$ is finite and of cardinality $\approx R \approx q^g$
- $\cal R$ is ordered by *distance*: $\delta(D)$ = $-v$, so

 $\mathcal R$ = $\left\{ \right.$ $\,D$ 1= $\mathbf{0}, D$ $_2,\ldots,D$ $r\,$ r }, D $i{+}1$ = $\,D$ i − $-\operatorname{\mathsf{div}}\bigg($ $\,a$ $\frac{i}{2}$ $\, + \,$ $\left(\frac{+y}{b_i}\right)$ $0=\delta_1$ $\zeta_1 < \delta_2$ $_2 < \cdots < \delta_r$ $r < R$

 $r\,$

 $\mathcal{R}=$ $\{D \mid D$ is a reduced *principal* divisor with $0 \leq -v < R\}$

Properties

- $\cal R$ is finite and of cardinality $\approx R \approx q^g$
- $\cal R$ is ordered by *distance*: $\delta(D)$ = $-v$, so

 $\mathcal{R}\,$ $=$ $\left\{ \right.$ D_1 $=\mathbf{0}, D_2, \ldots, D_r$ $_{r}\},\quad D_{i+1}$ $=D_i$ − $-\operatorname{\mathsf{div}}\bigg($ $\,a$ $\frac{i}{2}$ $\, + \,$ $\left(\frac{+y}{b_i}\right)$

- $0=\delta_1$ $\zeta_1 < \delta_2$ $_2 < \cdots < \delta_r$ $r\,$ $r < R$
- $\delta_1 = 0, \ \delta_2 = g + 1, \ 1 \leq \delta$ $i_1 = 0, \delta$ $2=g+1, \ \ 1\leq \delta_{i+1}-\delta_i\leq g$ for $2\leq i\leq r-1$

 $\mathcal{R}=$ $\{D \mid D$ is a reduced *principal* divisor with $0 \leq -v < R\}$

Properties

- $\cal R$ is finite and of cardinality $\approx R \approx q^g$
- $\cal R$ is ordered by *distance*: $\delta(D)$ = $-v$, so

 $\mathcal{R}\,$ $=$ $\left\{ \right.$ D_1 $=\mathbf{0}, D_2, \ldots, D_r$ $_{r}\},\quad D_{i+1}$ $=D_i$ − $-\operatorname{\mathsf{div}}\bigg($ $\,a$ $\frac{i}{2}$ $\, + \,$ $\left(\frac{+y}{b_i}\right)$

$$
\bullet \ \ 0 = \delta_1 < \delta_2 < \cdots < \delta_r < R
$$

 $\begin{aligned} 0&=\delta_1<\delta_2<\cdots<\delta_r<\ \delta_1&=0,\ \ \delta_2&=g+1,\ \ 1&\leq d. \end{aligned}$ $i_1 = 0, \delta$ $2=g+1, \ \ 1\leq \delta_{i+1}-\delta_i\leq g$ for $2\leq i\leq r-1$

A reduction step moves from D_i to D_{i+1} and is also $1(a)$ and known as ^a **baby step** $O(g)$ operations in \mathbb{F}_q

 $\mathcal{R}=$ $\{D \mid D$ is a reduced *principal* divisor with $0 \leq -v < R\}$

Properties

- $\cal R$ is finite and of cardinality $\approx R \approx q^g$
- $\cal R$ is ordered by *distance*: $\delta(D)$ = $-v$, so

 $\mathcal{R}\,$ $=$ $\left\{ \right.$ D_1 $=\mathbf{0}, D_2, \ldots, D_r$ $_{r}\},\quad D_{i+1}$ $=D_i$ − $-\operatorname{\mathsf{div}}\bigg($ $\,a$ $\frac{i}{2}$ $\, + \,$ $\left(\frac{+y}{b_i}\right)$

$$
0 = \delta_1 < \delta_2 < \dots < \delta_r < R
$$

 $\begin{aligned} 0&=\delta_1<\delta_2<\cdots<\delta_r<\ \delta_1&=0,\ \ \delta_2&=g+1,\ \ 1&\leq d. \end{aligned}$ $i_1 = 0, \delta$ $2=g+1, \ \ 1\leq \delta_{i+1}-\delta_i\leq g$ for $2\leq i\leq r-1$

A reduction step moves from D_i to D_{i+1} and is also $1(a)$ and known as ^a **baby step** $O(g)$ operations in \mathbb{F}_q

•
$$
D_{mr+i} = D_i + mR(\infty_1 - \infty_2)
$$
 for $m \in \mathbb{N}$ and $1 \le i \le r$

 ${\cal R}$ is "almost" an Abelian group under giant steps:

Closure: $D', D'' \in \mathcal{R} \Rightarrow D' \oplus D'' \in \mathcal{R}$

- Closure: $D', D'' \in \mathcal{R} \Rightarrow D' \oplus D'' \in \mathcal{R}$
- Identity: $D_1 = 0 = (1, 0; 0)$

- Closure: $D', D'' \in \mathcal{R} \Rightarrow D' \oplus D'' \in \mathcal{R}$
- Identity: $D_1 = 0 = (1, 0; 0)$
- Inverses: The inverse of $D = (a, b; v)$ is $-D = (a,$ $-h-\$ $b; -\deg(a)$ $-\,v)$

- Closure: $D', D'' \in \mathcal{R} \Rightarrow D' \oplus D'' \in \mathcal{R}$
- Identity: $D_1 = 0 = (1, 0; 0)$
- Inverses: The inverse of $D = (a, b; v)$ is $-D = (a,$ $-h-\$ $b; -\deg(a)$ $-\,v)$
- Commutativity: $D' \oplus D'' = D'' \oplus D'$

 ${\cal R}$ is "almost" an Abelian group under giant steps:

- Closure: $D', D'' \in \mathcal{R} \Rightarrow D' \oplus D'' \in \mathcal{R}$
- Identity: $D_1 = 0 = (1, 0; 0)$
- Inverses: The inverse of $D = (a, b; v)$ is $-D = (a,$ $-h-\$ $b; -\deg(a)$ $-\,v)$
- Commutativity: $D'\oplus D''=D''\oplus D'$
- "Almost" associative:

 $\delta(D'\oplus D'')=\delta(D')+\delta(D'')$ $-$ d with $0 \leq d \leq 2g$

 ${\cal R}$ is "almost" an Abelian group under giant steps:

- Closure: $D', D'' \in \mathcal{R} \Rightarrow D' \oplus D'' \in \mathcal{R}$
- Identity: $D_1 = 0 = (1, 0; 0)$
- Inverses: The inverse of $D = (a, b; v)$ is $-D = (a,$ $-h-\$ $b; -\deg(a)$ $-\,v)$
- Commutativity: $D'\oplus D''=D''\oplus D'$
- "Almost" associative:

 $\delta(D'\oplus D'')=\delta(D')+\delta(D'')$ $-$ d with $0 \leq d \leq 2g$

So $D \oplus (D' \oplus D'')$ is "close to" $(D \oplus D') \oplus D''$ within A_{α} in (within $4g$ in distance)

If $D = (a, b; v) \in \mathcal{R}$, then (a, b) determines $v = -\delta(D)$ \sim 1410 000 1415 to D uniquely and vice versa. So we can write $D=(a, b)$

- If $D = (a, b; v) \in \mathcal{R}$, then (a, b) determines $v = -\delta(D)$ \sim 1410 000 1415 to D uniquely and vice versa. So we can write $D=(a, b)$
- Given $D = (a, b) \in \mathcal{R}$, it is computationally infeasible to \mathbf{F} find $\delta(D)$ ———————————————— — infrastructure discrete log problem

- If $D = (a, b; v) \in \mathcal{R}$, then (a, b) determines $v = -\delta(D)$ \sim 1410 000 1415 to D uniquely and vice versa. So we can write $D=(a, b)$
- Given $D = (a, b) \in \mathcal{R}$, it is computationally infeasible to \mathbf{F} find $\delta(D)$ ———————————————— — infrastructure discrete log problem

Divisors of Fixed Distance:

- If $D = (a, b; v) \in \mathcal{R}$, then (a, b) determines $v = -\delta(D)$ \sim 1410 000 1415 to D uniquely and vice versa. So we can write $D=(a, b)$
- Given $D = (a, b) \in \mathcal{R}$, it is computationally infeasible to \mathbf{F} find $\delta(D)$ ———————————————— — infrastructure discrete log problem

Divisors of Fixed Distance: For n∈ [0, ^R), the divisor $D(n) \in \mathcal{R}$ below n is the divisor $D_i \in \mathcal{R}$ s $i \in \mathcal{R}$ such that

$$
\delta_i \leq n \, < \, \delta_{i+1}
$$

- If $D = (a, b; v) \in \mathcal{R}$, then (a, b) determines $v = -\delta(D)$ \sim 1410 000 1415 to D uniquely and vice versa. So we can write $D=(a, b)$
- Given $D = (a, b) \in \mathcal{R}$, it is computationally infeasible to \mathbf{F} find $\delta(D)$ ———————————————— — infrastructure discrete log problem

Divisors of Fixed Distance: For n∈ [0, ^R), the divisor $D(n) \in \mathcal{R}$ below n is the divisor $D_i \in \mathcal{R}$ s $i \in \mathcal{R}$ such that

$$
\delta_i \leq n \, < \, \delta_{i+1}
$$

Key Point: $n \rightsquigarrow D(n)$ easy, $D \rightsquigarrow \delta(D)$ hard

(S.-Stein-Williams 1996) Alice and Bob agree on ^a real hyperelliptic curve C over a finite field \mathbb{F}_q with regulator R

(S.-Stein-Williams 1996) Alice and Bob agree on ^a real hyperelliptic curve C over a finite field \mathbb{F}_q with regulator R

(S.-Stein-Williams 1996) Alice and Bob agree on ^a real hyperelliptic curve C over a finite field \mathbb{F}_q with regulator R

The secret is $K=D(mn)$

(S.-Stein-Williams 1996) Alice and Bob agree on ^a real hyperelliptic curve C over a finite field \mathbb{F}_q with regulator R

The secret is $K=D(mn)$

Same size key space and security as imaginary scenario, but slower – as this simply mimics real Jacobian arithmetic

 Useful for scalar multiplication in groups where computinginverses is cheap (note: $D = (a, b) \Rightarrow -D = (a, b)$ $-h-b)$

Useful for scalar multiplication in groups where computinginverses is cheap (note: $D=(a,b)\ \Rightarrow -D=(a,b)$ $-h-b)$

 \mathbf{z}

 $i{=}0$

i

The $\boldsymbol{\mathsf{non}\text{-} \textbf{adjacent}}$ form of n ∈N is n = \sum $\it b$ $\overline{u_i}$ 2 $l-\,$

 $b_0=1,\,b_i\in\{\pm 1,0\}$, no two consecutive b_i are $_0 = 1, b$ $\it i$ $i \in \{\pm 1, 0\}$, no two consecutive b_i are non-zero

Useful for scalar multiplication in groups where computinginverses is cheap (note: $D=(a,b)\ \Rightarrow -D=(a,b)$ $-h-b)$

 $i{=}0$

2 $l-\,$ i

The $\boldsymbol{\mathsf{non}\text{-} \textbf{adjacent}}$ form of n $\in \mathbb{N}$ is n = \sum $\it b$ $\overline{u_i}$

 $b_0=1,\,b_i\in\{\pm 1,0\}$, no two consecutive b_i are $_0 = 1, b$ $\it i$ $i \in \{\pm 1, 0\}$, no two consecutive b_i are non-zero ldea: $2^{i+1} + 2^{i} = 2^{i+2}$ $^2-2^i$

Useful for scalar multiplication in groups where computinginverses is cheap (note: $D=(a,b)\ \Rightarrow -D=(a,b)$ $-h-b)$

 $i{=}0$

 $\it b$ $\overline{u_i}$ 2 $l-\,$ i

The **non-adjacent form** of $n \in \mathbb{N}$ is $n =$ \sum

 $b_0=1,\,b_i\in\{\pm 1,0\}$, no two consecutive b_i are $_0 = 1, b$ $\it i$ $i \in \{\pm 1, 0\}$, no two consecutive b_i are non-zero ldea: $2^{i+1} + 2^{i} = 2^{i+2}$ $^2-2^i$

Properties

Useful for scalar multiplication in groups where computinginverses is cheap (note: $D=(a,b)\ \Rightarrow -D=(a,b)$ $-h-b)$

 \mathbf{z}

 $i{=}0$

2 $l-\,$ i

The $\boldsymbol{\mathsf{non}\text{-} \textbf{adjacent}}$ form of n $\in \mathbb{N}$ is n = \sum $\it b$ $\overline{u_i}$

 $b_0=1,\,b_i\in\{\pm 1,0\}$, no two consecutive b_i are $_0 = 1, b$ $\it i$ $i \in \{\pm 1, 0\}$, no two consecutive b_i are non-zero

Idea:
$$
2^{i+1} + 2^i = 2^{i+2} - 2^i
$$

Properties

For any $n\in\mathbb{N},$ NAF exists and is unique

Useful for scalar multiplication in groups where computinginverses is cheap (note: $D=(a,b)\ \Rightarrow -D=(a,b)$ $-h-b)$

 $i{=}0$

2 $l-\,$ i

The **non-adjacent form** of $n \in \mathbb{N}$ is $n =$ \sum $\it b$ $\overline{u_i}$

 $b_0=1,\,b_i\in\{\pm 1,0\}$, no two consecutive b_i are $_0 = 1, b$ $\it i$ $i \in \{\pm 1, 0\}$, no two consecutive b_i are non-zero

ldea: $2^{i+1} + 2^{i} = 2^{i+2}$ $^2-2^i$

Properties

- For any $n\in\mathbb{N},$ NAF exists and is unique
- $2^{l+1} < 3n < 2^{l+2}$. so NAF lenath is at m than the binary length of n $^1 < 3n < 2^{l+2}$, so NAF length is at most one more
Non-Adjacent Form

Useful for scalar multiplication in groups where computinginverses is cheap (note: $D=(a,b)\ \Rightarrow -D=(a,b)$ $-h-b)$)

 $i{=}0$

2 $l-\,$ i

The **non-adjacent form** of $n \in \mathbb{N}$ is $n =$ \sum $\it b$ $\overline{u_i}$

 $b_0=1,\,b_i\in\{\pm 1,0\}$, no two consecutive b_i are $_0 = 1, b$ $\it i$ $i \in \{\pm 1, 0\}$, no two consecutive b_i are non-zero

$$
ldea: 2^{i+1} + 2^i = 2^{i+2} - 2^i
$$

Properties

- For any $n\in\mathbb{N},$ NAF exists and is unique
- $2^{l+1} < 3n < 2^{l+2}$. so NAF lenath is at m than the binary length of n $^1 < 3n < 2^{l+2}$, so NAF length is at most one more
- Only 1/3 of all the digits is expected to be non-zero (as opposed to 1/2 of the ordinary bits of $n)$

Non-Adjacent Form

Useful for scalar multiplication in groups where computinginverses is cheap (note: $D=(a,b)\ \Rightarrow -D=(a,b)$ $-h-b)$)

 $i{=}0$

2 $l-\,$ i

The **non-adjacent form** of $n \in \mathbb{N}$ is $n =$ \sum $\it b$ $\overline{u_i}$

 $b_0=1,\,b_i\in\{\pm 1,0\}$, no two consecutive b_i are $_0 = 1, b$ $\it i$ $i \in \{\pm 1, 0\}$, no two consecutive b_i are non-zero

$$
ldea: 2^{i+1} + 2^i = 2^{i+2} - 2^i
$$

Properties

- For any $n\in\mathbb{N},$ NAF exists and is unique
- $2^{l+1} < 3n < 2^{l+2}$. so NAF lenath is at m than the binary length of n $^1 < 3n < 2^{l+2}$, so NAF length is at most one more
- Only 1/3 of all the digits is expected to be non-zero (as opposed to 1/2 of the ordinary bits of $n)$
- NAF is easily computable (almost for free)

Input: a reduced divisor \overline{D} and a scalar \overline{n} = \sum^l $i{=}0$ $\it b$ $\overline{u_i}$ 2 $l-\,$ i in NAF

Input: a reduced divisor \displaystyle{D} and a scalar \displaystyle{n} = \sum^l $\it b$ $\overline{u_i}$ 2 $l-\,$ i in NAF

 $i{=}0$

Output: the reduced divisor $\mathsf{Red}(nD)$

Input: a reduced divisor \displaystyle{D} and a scalar \displaystyle{n} = \sum^l $\it b$ $\overline{u_i}$ 2 $l-\,$ i in NAF

 $i{=}0$

Output: the reduced divisor $\mathsf{Red}(nD)$

Algorithm:

1. Set $E=D$ 2. For $i = 1$ to l do // Double $\mathsf{P} \mathsf{P} \mathsf{$ $b_i = 1$, replace E by $E \oplus D$ // Add If $h = 1$ ranked Γ by Γ If $b_i=-$ 1, replace E by $E\oplus(\mathbb{R})$ $-D)$

3. Output E

Input: a reduced divisor \displaystyle{D} and a scalar \displaystyle{n} = \sum^l $\it b$ $\overline{u_i}$ 2 $l-\,$ i in NAF

 $i{=}0$

Output: the reduced divisor $\mathsf{Red}(nD)$

Algorithm:

1. Set $E=D$ 2. For $i = 1$ to l do // Double $\mathsf{P} \mathsf{P} \mathsf{$ $b_i = 1$, replace E by $E \oplus D$ // Add If $h = 1$ ranked Γ by Γ If $b_i=-$ 1, replace E by $E\oplus(\mathbb{R})$ $-D)$

3. Output E

 l doubles, $l/3$ adds

Input: $D \in \mathcal{R}$ and $n=$ $\sum b_i 2^{l-i}$ in NAF

 $\emph{\textbf{Input:}}\;\;D\in\mathcal{R}\;\,\textbf{and}\;n=0$ utnut: The divisor E **12** $\sum b_i 2^{l-i}$ in NAF *Output:* The divisor E below $n\delta(D)$

 $\emph{\textbf{Input:}}\;\;D\in\mathcal{R}\;\,\textbf{and}\;n=\ \cap$ utnut: The divisor E **12** $\sum b_i 2^{l-i}$ in NAF *Output:* The divisor E below $n\delta(D)$ Algorithm:

```
1. Set E=D

2. For i=1 to l do
           H Double Replace E by E \oplus E<br>Weaking the Replace E by D(\Omega)Il Adjust Replace E by D(2\delta(E))If b_i\neq 0 then
                    If b_i=1, set D^\prime=D. .
                    If b_i=-

                           \bm{v} , 1, set D'=-D\mathcal{V} Add replace E by E \oplus D'

                   Il Adjust Replace E by D(\delta(E) + \delta(D'))3. Output E
```
 $\emph{\textbf{Input:}}\;\;D\in\mathcal{R}\;\,\textbf{and}\;n=\ \cap$ utnut: The divisor E **12** $\sum b_i 2^{l-i}$ in NAF *Output:* The divisor E below $n\delta(D)$ Algorithm:

1. Set $E=D$ 2. For $i=1$ to l do H Double Replace E by $E \oplus E$
Weaking the Replace E by $D(\Omega)$ *Il Adjust* Replace E by $D(2\delta(E))$ If $b_i\neq 0$ then If $b_i=1$, set $D^\prime=D$. . If $b_i= \bm{v}$, \bm{v} , 1 , set $D'=-D$ \mathcal{V} Add replace E by $E \oplus D'$ *Il Adjust* Replace E by $D(\delta(E) + \delta(D'))$ 3. Output E

 l doubles, $l/3$ adds, up to $(l+l/3)\cdot 2g=(8g/3)l$ baby steps

Input: $n\in\mathbb{N},\,s=$ $\lfloor n/(g+1)\rfloor$ in NAF

Input: $n\in\mathbb{N},\,s=$ *Output:* The divisor $D(n) \in \mathcal{R}$ below n $\lfloor n/(g+1)\rfloor$ in NAF

Input: $n\in\mathbb{N},\,s=$ *Output:* The divisor $D(n) \in \mathcal{R}$ below n $\lfloor n/(g+1)\rfloor$ in NAF Algorithm:

- 1. Compute $E'=D(s(g+1)$ by calling the previous \boldsymbol{m} $\boldsymbol{\wedge}\boldsymbol{n}$ \boldsymbol{m} algorithm on inputs D_2 $_2$ and s
- 2. Apply at most $n s(g + 1)$ baby steps to E' to compute $D(n)$
- 3. Output E

Input: $n\in\mathbb{N},\,s=$ Output: The divisor $D(n) \in \mathcal{R}$ below n $\lfloor n/(g+1)\rfloor$ in NAF Algorithm:

- 1. Compute $E'=D(s(g+1)$ by calling the previous \boldsymbol{m} $\boldsymbol{\wedge}\boldsymbol{n}$ \boldsymbol{m} algorithm on inputs D_2 $_2$ and s
- 2. Apply at most $n s(g + 1)$ baby steps to E' to compute $D(n)$
- 3. Output E
- **•** one integer division with remainder
- all the operations from previous algorithm
- at most g baby steps

Heuristics: with probability 1 $-O(q^{-1})$ $^{1})$:

Heuristics: with probability 1 $-O(q^{-1})$ $^{1})$:

 $\delta_{i+1} - \delta_i = 1$ for $2 \leq i \leq r$

Heuristics: with probability 1 $-O(q^{-1})$ $^{1})$:

$$
\bullet \quad \delta_{i+1} - \delta_i \ = \ 1 \ \ \text{for} \ \ 2 \leq i \leq r
$$

$$
\bullet \ \delta(D' \oplus D'') = \delta(D') + \delta(D'') - \lceil g/2 \rceil
$$

Heuristics: with probability 1 $-O(q^{-1})$ $^{1})$:

$$
\bullet \quad \delta_{i+1} - \delta_i \ = \ 1 \ \ \text{for} \ \ 2 \leq i \leq r
$$

$$
\bullet \ \delta(D' \oplus D'') = \delta(D') + \delta(D'') - \lceil g/2 \rceil
$$

 $\bf{Consequences:}$ with probability $1-O(q^{-1})$ $\left(\frac{1}{2} \right)$:

Heuristics: with probability 1 $-O(q^{-1})$ $^{1})$:

$$
\bullet \quad \delta_{i+1} - \delta_i \ = \ 1 \ \ \text{for} \ \ 2 \leq i \leq r
$$

$$
\bullet \ \delta(D' \oplus D'') = \delta(D') + \delta(D'') - \lceil g/2 \rceil
$$

 $\bf{Consequences:}$ with probability $1-O(q^{-1})$ $\left(\frac{1}{2} \right)$:

If $D_i = \left(a_i, b_i \right)$ then

 $\deg(a_i) = \deg(b_{i+1}+b_i-h)$ $-\deg(c_i) = (g + 1)$ $-1 = g$

Heuristics: with probability 1 $-O(q^{-1})$ $^{1})$:

$$
\bullet \quad \delta_{i+1} - \delta_i \ = \ 1 \ \ \text{for} \ \ 2 \leq i \leq r
$$

$$
\bullet \ \delta(D' \oplus D'') = \delta(D') + \delta(D'') - \lceil g/2 \rceil
$$

 $\bf{Consequences:}$ with probability $1-O(q^{-1})$ $\left(\frac{1}{2} \right)$:

• If
$$
D_i = (a_i, b_i)
$$
 then

 $\deg(a_i) = \deg(b_{i+1}+b_i-h)$ $-\deg(c_i) = (g + 1)$ $-1 = g$

■ Relative distances (distance advancements) for both baby steps and giant steps are known and need nolonger be kept track of

Variable Base Scenario

Variable Base Scenario

Eliminate all adjustment steps, at the expense of $d=$ the NAF length l of the scalars $m,n)$ $\lceil g/2 \rceil$ baby steps at the beginning (independent of

Variable Base Scenario

Eliminate all adjustment steps, at the expense of $d=$ the NAF length l of the scalars $m,n)$ $\lceil g/2 \rceil$ baby steps at the beginning (independent of

Fixed Base Scenario

Variable Base Scenario

Eliminate all adjustment steps, at the expense of $d=$ the NAF length l of the scalars $m,n)$ $\lceil g/2 \rceil$ baby steps at the beginning (independent of

Fixed Base Scenario

Replace all adds by baby steps

Variable Base Scenario

Eliminate all adjustment steps, at the expense of $d=$ the NAF length l of the scalars $m,n)$ $\lceil g/2 \rceil$ baby steps at the beginning (independent of

Fixed Base Scenario

- Replace all adds by baby steps
————————————————————
- Eliminate all adjustment steps, at the expense of thefollowing pre-computation $(g+2$ baby steps, l doubles):
	- D^* with $\delta(D^*) = 2^l$ $(g + 1) + g$
		- $J+1$ h $d+1$ baby steps applied to D_1 $_1$ to obtain D_{d+2}
		- l doubles, starting with $D_{d+2}\!\!:$ gets to distance 2^l $(g + 1) + d$
		- $g-d$ baby steps

 D_{d+3} with $\delta_{d+3}=d+g+2$: one baby step from D_{d+2}

Input: $D \in \mathcal{R}$, $n =$ $\sum b_i 2^{l-i}$ in NAF

 $\mathsf{Input:}\ D\in\mathcal{R},\ n=\ \bigcap_{\mathsf{U}}\mathsf{true}$ $\sum b_i 2^{l-i}$ in NAF $\overline{}$ $\overline{}$ *Output:* The divisor $E \in \mathcal{R}$ of distance $n \delta(D) + d$

 $\mathsf{Input:}\ D\in\mathcal{R},\ n=\ \bigcap_{\mathsf{U}}\mathsf{true}$ $\sum b_i 2^{l-i}$ in NAF *Output:* The divisor $E \in \mathcal{R}$ of distance $n\delta(D) + d$ Algorithm:

- 1. $E_1=D$
- $L \cap r$ α . 2. For $i = 1$ to $d-1$ do \qquad // $d-1$ baby steps Replace E_i by E_{i+1}
- 3. // Now $E_i=E_d$ 4. For $i = 1$ to l do L_d Set $D'=E_i, D''$ $=E_{i+1},\;\;E=E_{i+1}$
	- \mathcal{V}/\mathcal{V} Double Replace E by $E\oplus E$ // Add $\;\;\;$ If $\,b_i=1,\;$ replace E by $E\oplus D''$ If $b_i=-1$ and g is even, replace E by $E\oplus D''$ If $b_i=-1$ and g is odd, replace E by $E\oplus D'$

5. Output E

 $\mathsf{Input:}\ D\in\mathcal{R},\ n=\ \bigcap_{\mathsf{U}}\mathsf{true}$ $\sum b_i 2^{l-i}$ in NAF *Output:* The divisor $E \in \mathcal{R}$ of distance $n\delta(D) + d$ Algorithm:

- 1. $E_1=D$
- $L \cap r$ α . 2. For $i = 1$ to $d-1$ do \qquad // $d-1$ baby steps Replace E_i by E_{i+1}
- 3. // Now $E_i=E_d$ 4. For $i = 1$ to l do L_d Set $D'=E_i, D''$ $=E_{i+1},\;\;E=E_{i+1}$
	- \mathcal{V}/\mathcal{V} Double Replace E by $E\oplus E$ // Add $\;\;\;$ If $\,b_i=1,\;$ replace E by $E\oplus D''$ If $b_i=-1$ and g is even, replace E by $E\oplus D''$ If $b_i=-1$ and g is odd, replace E by $E\oplus D'$

5. Output E

 l doubles, $l/3$ adds, d baby steps

Improvements, Fixed Base
Pre-Computation: D^{\ast} *, D_{d+3}

Pre-Computation: D^{\ast} *Input:* $n=\sum b_i 2^{l-\imath}$ *in N* *, D_{d+3} $\sum b_i 2^{l-1}$ i in NAF

Pre-Computation: D^{\ast} *Input:* $n=\sum b_i 2^{l-\imath}$ *in N* *, D_{d+3} *Output:* The divisor $E = D(n) \in \mathcal{R}$ of distance n $\sum b_i 2^{l-i}$ in NAF

Pre-Computation: D^{\ast} *Input:* $n=\sum b_i 2^{l-\imath}$ *in N* *, D_{d+3} *Output:* The divisor $E=D(n)\in \mathcal{R}$ of distance n
Algorithm: $\sum b_i 2^{l-i}$ in NAF Algorithm:

- 1. Set $E=D_{d+3}$
- 2. For $i = 1$ to l do

// Double \bf{P} Replace E by $E \oplus E$ // Baby Step If $b_i = 1$ then apply a baby step to E If $b_i=-1$ then apply a backward baby step to E

- 3. // Now at distance 2^{l+1} **Compute** $D=E\oplus(-D^*)$ $1 + n + d$ $-D^*$ $\left(\begin{array}{c} \ast \end{array} \right)$
- 4. Output D

Pre-Computation: D^{\ast} *Input:* $n=\sum b_i 2^{l-\imath}$ *in N* *, D_{d+3} *Output:* The divisor $E=D(n)\in \mathcal{R}$ of distance n
Algorithm: $\sum b_i 2^{l-i}$ in NAF Algorithm:

- 1. Set $E=D_{d+3}$
- 2. For $i = 1$ to l do

// Double \bf{P} Replace E by $E \oplus E$ // Baby Step If $b_i = 1$ then apply a baby step to E If $b_i=-1$ then apply a backward baby step to E

- 3. // Now at distance 2^{l+1} **Compute** $D=E\oplus(-D^*)$ $1 + n + d$ $-D^*$ $\left(\begin{array}{c} \ast \end{array} \right)$
- 4. Output D

 l doubles, one add, $l/3$ baby steps

Naive Analysis:

Naive Analysis:

Real variable base scenario has about the same speedas imaginary model (neglecting the cost of baby steps)

Naive Analysis:

- Real variable base scenario has about the same speed as imaginary model (neglecting the cost of baby steps)
- Real model fixed base scenario is about 25 percent faster than imaginary model (factor 3/4)

Naive Analysis:

- Real variable base scenario has about the same speed as imaginary model (neglecting the cost of baby steps)
- Real model fixed base scenario is about 25 percent faster than imaginary model (factor 3/4)
- Key agreement is about 12.5 percent faster (factor 7/8)

Naive Analysis:

- Real variable base scenario has about the same speed as imaginary model (neglecting the cost of baby steps)
- Real model fixed base scenario is about 25 percent faster than imaginary model (factor 3/4)
- Key agreement is about 12.5 percent faster (factor 7/8)

Supported by numerical data, but not quite fair comparison: imaginary model could use a "point" divisor $D = P - \infty$ as
base divisor (Katagi, Kitamura, Akishita & Takagi 2005) base divisor (Katagi, Kitamura, Akishita & Takagi 2005)

Imaginary Model – Jacobian DLP

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in
the divisor class of s D, find s the divisor class of $nD,$ find n

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in
the divisor class of s D, find s the divisor class of $nD,$ find n

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in
the divisor class of s D, find s the divisor class of $nD,$ find n

Real Model – Infrastructure DLP

Given a divisor $D\in\mathcal{R}$ and the divisor $E\in\mathcal{R}$ below
palon stind p $n\delta(D)$, find n

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in
the divisor class of s D, find s the divisor class of $nD,$ find n

- Given a divisor $D\in\mathcal{R}$ and the divisor $E\in\mathcal{R}$ below
palon stind p $n\delta(D)$, find n
- Given the divisor $D(n) \in \mathcal{R}$ below $n,$ find suitable n

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in
the divisor class of s D, find s the divisor class of $nD,$ find n

- Given a divisor $D\in\mathcal{R}$ and the divisor $E\in\mathcal{R}$ below
palon stind p $n\delta(D)$, find n
- Given the divisor $D(n) \in \mathcal{R}$ below $n,$ find suitable n
- Given a divisor $D\in\mathcal{R},$ find $\delta(D)$

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in
the divisor class of s D, find s the divisor class of $nD,$ find n

- Given a divisor $D\in\mathcal{R}$ and the divisor $E\in\mathcal{R}$ below
palon stind p $n\delta(D)$, find n
- Given the divisor $D(n) \in \mathcal{R}$ below $n,$ find suitable n
- Given a divisor $D\in\mathcal{R},$ find $\delta(D)$
- Given ^a reduced principal ideal in the coordinate ring of C , find a generator (*Principal Ideal Problem*)

Imaginary Model – Jacobian DLP

Given a reduced divisor D and the reduced divisor in
the divisor class of s D, find s the divisor class of $nD,$ find n

Real Model – Infrastructure DLP

- Given a divisor $D\in\mathcal{R}$ and the divisor $E\in\mathcal{R}$ below
palon stind p $n\delta(D)$, find n
- Given the divisor $D(n) \in \mathcal{R}$ below $n,$ find suitable n
- Given a divisor $D\in\mathcal{R},$ find $\delta(D)$
- Given ^a reduced principal ideal in the coordinate ring of C , find a generator (*Principal Ideal Problem*)

Security of both DLPs seems to be the same – exponential

Idea: Replace giant steps by baby steps where possible

Idea: Replace giant steps by baby steps where possible

Idea: Replace giant steps by baby steps where possible

Present and Future Work

NUCOMP – exact operation count and comparison withCantor giant steps

Idea: Replace giant steps by baby steps where possible

- NUCOMP exact operation count and comparison with Cantor giant steps
- Explicit formulas for low genus giant steps, real model

Idea: Replace giant steps by baby steps where possible

- NUCOMP exact operation count and comparison with Cantor giant steps
- Explicit formulas for low genus giant steps, real model
- Explicit formulas for low genus giant steps, based onNUCOMP, both models

Idea: Replace giant steps by baby steps where possible

- NUCOMP exact operation count and comparison withCantor giant steps
- Explicit formulas for low genus giant steps, real model
- Explicit formulas for low genus giant steps, based onNUCOMP, both models
- Use the baby step giant step framework to to speed up the DLP in $\mathcal R$ or in $\mathcal J$? And to find R or $|\mathcal J|$?

Idea: Replace giant steps by baby steps where possible

- NUCOMP exact operation count and comparison withCantor giant steps
- Explicit formulas for low genus giant steps, real model
- Explicit formulas for low genus giant steps, based onNUCOMP, both models
- Use the baby step giant step framework to to speed up the DLP in $\mathcal R$ or in $\mathcal J$? And to find R or $|\mathcal J|$?
- Structural relationship between ${\cal R}$ and ${\cal J}$?

Idea: Replace giant steps by baby steps where possible

- NUCOMP exact operation count and comparison withCantor giant steps
- Explicit formulas for low genus giant steps, real model
- Explicit formulas for low genus giant steps, based onNUCOMP, both models
- Use the baby step giant step framework to to speed up the DLP in $\mathcal R$ or in $\mathcal J$? And to find R or $|\mathcal J|$?
- Structural relationship between ${\cal R}$ and ${\cal J}$?
- Special types of curves?

Some General References

- 1. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercouteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman & Hall/CRC, Boca Raton (Florida), 2006
- 2. M. J. Jacobson, Jr., A. J. Menezes and A. Stein, Hyperelliptic curves and cryptography, in High Primes and Misdemeanors: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, Fields Institute Communications **⁴¹**, American Mathematical Society, Providence (Rhode Island) 2004, 255-282
- 3. M. J. Jacobson, Jr., R. Scheidler and A. Stein, Cryptographic protocols on real hyperelliptic curves. Advances in Mathematics of Communications**1** (2007), 197-221
- 4. M. J. Jacobson, Jr., R. Scheidler and A. Stein, Fast arithmetic on hyperelliptic curvesvia continued fraction expansions. Advances in Coding Theory and Cryptology, Serieson Coding Theory and Cryptology**²**, World Scientific Publishing Co. Pte. Ltd., Hackensack (New Jersey) 2007, 201-244
- 5. A. J. Menezes, Y.-H. Wu and R. J. Zuccherato, An elementary introduction tohyperelliptic curves, in Algebraic Aspects of Cryptography, Algorithms and Computation in Mathematics**3**, Springer, Berlin (Germany) 1998, 155-178
- 6. R. Scheidler, A. Stein and H. C. Williams, Key exchange in real quadratic congruencefunction fields. Designs, Codes and Cryptography**7** (1996), 153-174