
Stable Traffic Equilibria:Stable Traffic Equilibria:
Properties and ApplicationProperties and Application

Yuriy Zinchenko, AdvOL, McMaster
(in part based on work of Yurii Nesterov’s)





Some history
• Transportation problem

– formulated in 1781 by Gaspard Monge
– major advances during WWII by Leonid Kantorovich
– a predecessor to linear programming
– in a simple form 

• given a set of balanced demands and supplies
and corresponding shipping costs, 
find the cheapest routing, i.e., a minima
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Some history
• Transportation problem

– formulated in 1781 by Gaspard Monge
– major advances during WWII by Leonid Kantorovich
– a predecessor to linear programming
– in a simple form 

• given a set of balanced demands and supplies
and corresponding shipping costs, 
find the cheapest routing, i.e., a minima

– generalizes to network flows (single and multi-commodity), 
transportation networks (network equilibrium, Beckmann, 
McGuire and Winsten, 1956), etc. 



Network equilibria

• Concept originated in 1924 and is due to Frank Knight
• Intuitively clear meaning:

“a stable state of the traffic network, i.e., a state that can 
sustain itself over time”
– may be interpreted on the appropriate time-scale, e.g., a “steady” 

traffic pattern during the rush hour  

• Formalized by John Glen Wardrop in 1952
– First principle: “The journey times in all routes actually used are 

equal and less than those which would be experienced by a 
single vehicle on any unused route”, i.e., selfish agents

– Second principle: “At equilibrium the average journey time is 
minimum ”, i.e., efficient use of the whole system



Modeling formalism
Network R, given as a directed graph (N, A ), 

– e.g., N={1,2,3}, A  ={1,2,3,4}

OD-pairs OD={(ik , jk):ik , jk ∈ N, k =1,…,P}
– e.g., OD={(1,2),(1,3),(2,1),(2,3)}

Each OD-pair generates a demand dk ≥ 0
– an average flow of drivers that needs to travel 

between ik and jk

Travel cost (time) cα(fα), α =1,…,||A ||, where

fα ≥ 0 is the flow on arc α
Assume: cα is increasing with fα

For each (ik , jk) define set of routes Ak, e.g., A2=
where number of such routes is denoted rk

1

3

2

4

2

1

3

1

1

1

Route 2

Arc 3



Modeling formalism
For each (ik , jk) introduce a set feasible route flows 

∆k = {Fk ∈ R
+

r
k : 1T Fk = dk }

Note, for any choice of route flows F=(F1 ,…, Fk) ∈ ∆ 
can compute the vector of arc flows f = AF,

where A=(A1,…,AP),
and compute cost of the routes as Ck(F)= Ak

T c(AF)

Formally, static (Waldrop) equilibrium is F ∈ ∆ such that 
Fk

(m) >0 ⇒ Ck
(m) (F )=minr Ck

(r) (F )
Alternatively

〈C(F), F – F 〉 ≥ 0, for all F ∈ ∆minf,F {Σα ∫0
rk cα(τ) dτ : f = AF, F ∈ ∆ }

note convex minimization problem



Equilibrium existence
• Wardrop

– for any OD-pair the cost for all used paths are the 
same and there are no unused paths with strictly 
smaller cost

• User
– for any OD-pair, no arbitrary small pack of drivers can 

benefit by switching to another path

Note: if cost f is continuous, these are the same
But, what if not ?



Equilibrium existence

Three examples:
• Wardrop but no user

– source and sink, unit demand, two arcs  
– c1(f1) = f1,

5/4 f2, if f2<1/2
– c2(f2) = 1/2, if f2=1/2

5/4 f2 -1/4, if f2>1/2

– then f1 = f1 =1/2 is a Wardrop equilibrium
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Equilibrium existence

Three examples:
• user but no Wardrop

– source and sink, unit demand, two arcs  
– c1(f1) = f1,

– c2(f2) = 1/2 f2, if f2≤1/2
1/2 f2 +1/2, if f2>1/2

– then f1 = f1 =1/2 is a user equilibrium
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Equilibrium existence

Three examples:
• neither Wardrop nor user

– source and sink, unit demand, two arcs  
– c1(f1) = f1,

1/2 f2, if f2<1/2
– c2(f2) = 5/8, if f2=1/2

1/2 f2 +1/2, if f2>1/2

– then no equilibrium

2

1 2

1

c1

c2



Braess’s paradox

• Adding a shortcut can slow down 
everyone!



Braess’s paradox



Braess’s paradox



Modeling formalism
Network R, given as a directed graph (N, A ), 

– e.g., N={1,2,3}, A  ={1,2,3,4}

OD-pairs OD={(ik , jk):ik , jk ∈ N, k =1,…,P}
– e.g., OD={(1,2),(1,3),(2,1),(2,3)}

Each OD-pair generates a demand dk ≥ 0
– an average flow of drivers that needs to travel 

between ik and jk

Travel cost (time) cα(fα), α =1,…,||A ||, where

fα ≥ 0 is the flow on arc α
Assume: cα is increasing with fα

For each (ik , jk) define set of routes Ak, e.g., A2=
where number of such routes is denoted rk
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Nesterov’s approach

• Main problem with a classical model?
– Cost (time) increases with flow

• e.g., a free interstate gives large flow, short time, 
or a congested route with small flow, long time

flow = speed x density

• An alternative?
– Queering model

• Time(n number of travelers) = min { T, n / f }
where T is free traffic time, 
f – capacity of the bottleneck



Modeling formalism

• Additional ingredients
– arc flows f
– arc travel times t
– arc loading n (average number of drivers on the arc) 

• Network state is stable if n = t f

• Analysis is in terms of network loading
– e.g., Nk – average number of drivers between OD-pair 



“Potential” function

where Tk(t) is the shortest path (w.r.t. t) between OD-pair k

Note: the function is concave in t
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Equilibrium characterization

• Network state (f, t, n) is stable 

(Wardrop) equilibrium iff it is stable and

f ∈ ∂φ (t)

– ∂φ is superdifferential, e.g., a derivative if φ is 
differentiable

• As a corollary, f corresponds to a stable 
equilibrium iff maxt{φ (t) - 〈 f , t 〉} is solvable



Tractability and comparison

• Sufficient conditions for equilibrium
– t ≥ t (natural lower bound on travel times)
– f ≤ f (natural upper bound on arc capacities)

• Using the potential function, can rephrase 
equilibrium in terms of OD-demands

• Problem allows reformulation as LP (for 
efficient computation)

• Consistent with queering model
• Classical Beckmann model detects 

congestions “too late” and, thus, 
systematically underestimates congestion



Extensions

• Tractable network design is possible (over 
arc capacities and shortest times)
– minimize “social distance” (average travel 

time), as a byproduct increase congestion on 
most attractive arcs

– maximize “social distance” while offloading 
most popular (congested) arcs

• e.g., traffic lights or lane direction inversion



Analysis ingredients

• Graph theory
• Variation inequalities/calculus
• Convex analysis/optimization

• Selected references
– Yurii Nesterov, Stable Traffic Equilibria: Properties 

and Applications
– Andre de Palma, Yurii Nesterov, Optimization 

Formulations and Static Equilibrium in Congested 
Transportation Networks


