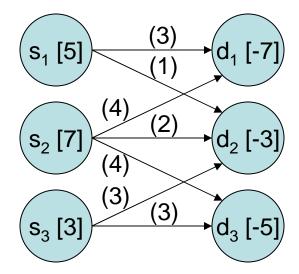
Stable Traffic Equilibria: Properties and Application

Yuriy Zinchenko, AdvOL, McMaster (in part based on work of Yurii Nesterov's)

Some history

- Transportation problem
 - formulated in 1781 by Gaspard Monge
 - major advances during WWII by Leonid Kantorovich
 - a predecessor to *linear programming*
 - in a simple form
 - given a set of balanced demands and supplies and corresponding shipping costs, find the cheapest routing, i.e., a minima

	d ₁	d ₂	d ₃	Supply
S ₁	2	3	0	5
S ₂	5	0	2	7
S ₃	0	0	3	3
Demand	7	3	5	



Some history

- Transportation problem
 - formulated in 1781 by Gaspard Monge
 - major advances during WWII by Leonid Kantorovich
 - a predecessor to *linear programming*
 - in a simple form
 - given a set of balanced demands and supplies and corresponding shipping costs, find the cheapest routing, i.e., a minima
 - generalizes to network flows (single and multi-commodity), transportation networks (network equilibrium, Beckmann, McGuire and Winsten, 1956), etc.

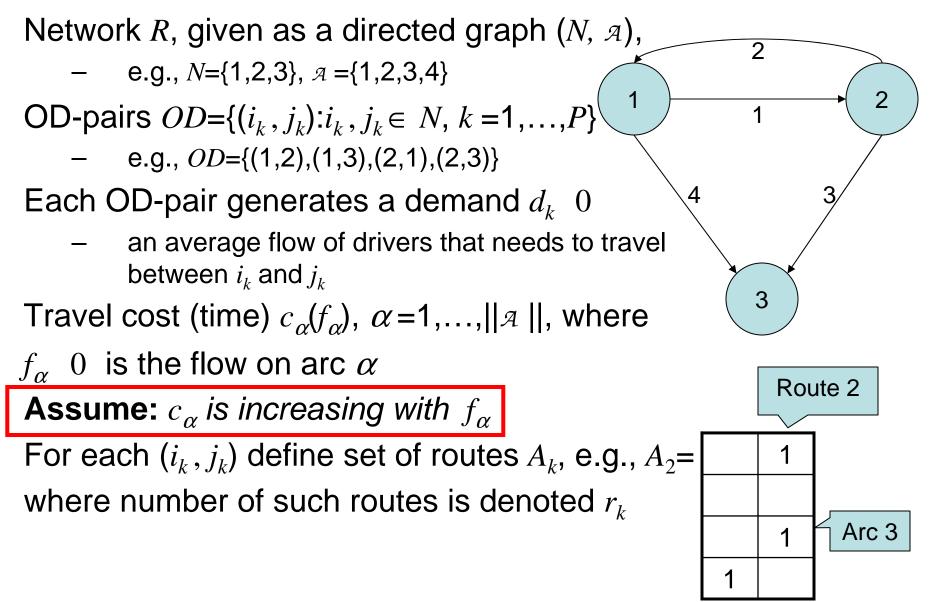
Network equilibria

- Concept originated in 1924 and is due to Frank Knight
- Intuitively clear meaning:

"a stable state of the traffic network, i.e., a state that can sustain itself over time"

- may be interpreted on the appropriate time-scale, e.g., a "steady" traffic pattern during the rush hour
- Formalized by John Glen Wardrop in 1952
 - First principle: "The journey times in all routes actually used are equal and less than those which would be experienced by a single vehicle on any unused route", i.e., selfish agents
 - Second principle: "At equilibrium the average journey time is minimum", i.e., efficient use of the whole system

Modeling formalism



Modeling formalism

For each (i_k, j_k) introduce a set feasible route flows $\Delta_k = \{F_k \in \mathbb{R}_+^{r_k} : \mathbb{1}^T F_k = d_k\}$ Note, for any choice of route flows $F=(F_1, \dots, F_k) \in \Delta$ can compute the vector of arc flows f = AF, where $A=(A_1, \dots, A_P)$,

and compute cost of the routes as $C_k(F) = A_k^{T} c(AF)$

Formally, static (Waldrop) equilibrium is $F \in \Delta$ such that $F_k^{(m)} > 0 \Rightarrow C_k^{(m)}(F) = \min_r C_k^{(r)}(F)$

Alternatively

$$\mathsf{mir}_{f,F}(\mathcal{F} \Sigma_{\alpha} f_{0}) \xrightarrow{r_{k}} \mathcal{E}_{\alpha}(\mathcal{F}) \mathcal{O}_{\mathcal{F}}(\mathcal{F}) \xrightarrow{\mathfrak{sl}} \mathcal{O} \xrightarrow{\mathfrak{sl}} \mathcal{O}_{\mathcal{F}}(\mathcal{F}) \xrightarrow{\mathfrak{sl}} \mathcal{O} \xrightarrow{\mathfrak{sl}$$

note convex minimization problem

- Wardrop
 - for any OD-pair the cost for all used paths are the same and there are no unused paths with strictly smaller cost
- User
 - for any OD-pair, no arbitrary small pack of drivers can benefit by switching to another path

Note: if cost *f* is continuous, these are the same But, what if not ?

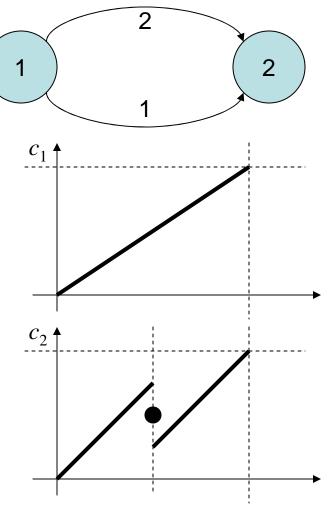
Three examples:

- Wardrop but no user
 - source and sink, unit demand, two arcs

$$- c_1(f_1) = - f_1,$$

$$5/4 f_2, if f_2 < 1/2 - c_2(f_2) = 1/2, if f_2 = 1/2 5/4 f_2 - 1/4, if f_2 > 1/2 if f_2 if f_2 > 1/2 if f_2 if f_2 > 1/2 if f_2 if f_2$$

- then
$$f_1 = f_1 = 1/2$$
 is a Wardrop equilibrium



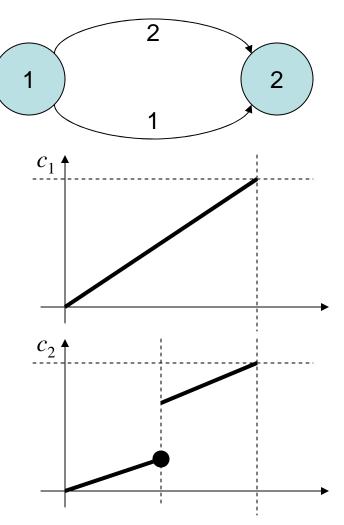
Three examples:

- user but no Wardrop
 - source and sink, unit demand, two arcs

$$- c_1(f_1) = - f_1,$$

$$-c_2(f_2) = \frac{1/2}{f_2}, \quad \text{if } f_2 \frac{1}{2} \\ \frac{1/2}{f_2} + \frac{1}{2}, \quad \text{if } f_2 > \frac{1}{2}$$

- then
$$f_1 = f_1 = 1/2$$
 is a user equilibrium



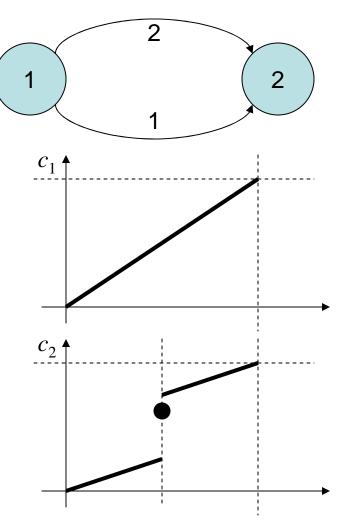
Three examples:

- neither Wardrop nor user
 - source and sink, unit demand, two arcs

$$- c_1(f_1) = - f_1,$$

$$1/2 f_2, \qquad \text{if } f_2 < 1/2 \\ - c_2(f_2) = 5/8, \qquad \text{if } f_2 = 1/2 \\ 1/2 f_2 + 1/2, \qquad \text{if } f_2 > 1/2 \end{cases}$$

- then no equilibrium



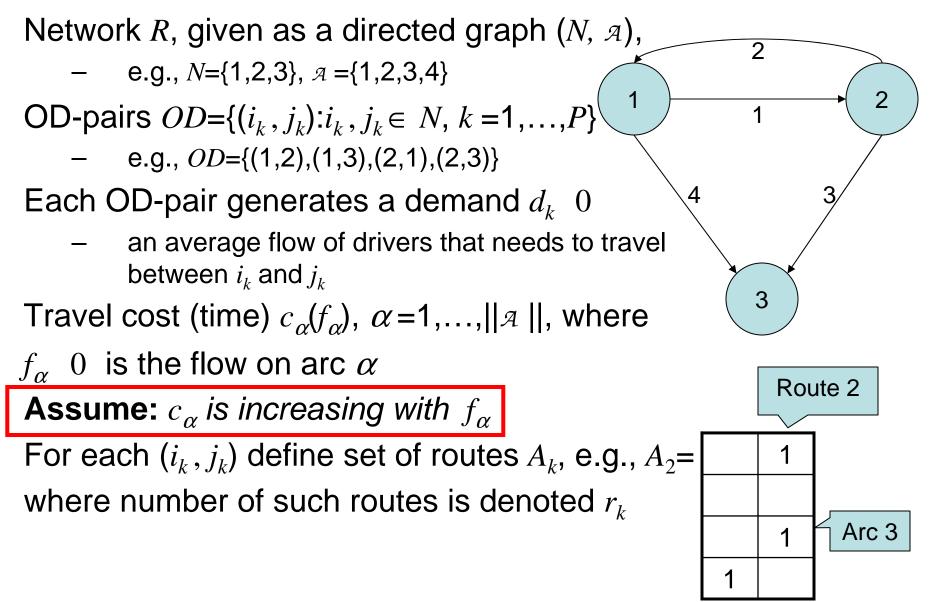
Braess's paradox

 Adding a shortcut can slow down everyone!

Braess's paradox

Braess's paradox

Modeling formalism



Nesterov's approach

- Main problem with a classical model?
 - Cost (time) increases with flow
 - e.g., a free interstate gives large flow, short time, or a congested route with small flow, long time

flow = speed x density

- An alternative?
 - Queering model
 - Time(*n* number of travelers) = min { *T*, *n* / *f* } where *T* is free traffic time,

f – capacity of the bottleneck

Modeling formalism

- Additional ingredients
 - $\operatorname{arc} \operatorname{flows} f$
 - arc travel times t
 - arc loading n (average number of drivers on the arc)
- Network state is stable if n = tf
- Analysis is in terms of network loading

- e.g., N_k – average number of drivers between OD-pair

"Potential" function

$$\phi(t) = \sum_{k=1}^{P} N_k \ln T_k(t)$$

where $T_k(t)$ is the shortest path (w.r.t. *t*) between OD-pair k

Note: the function is concave in *t*

Equilibrium characterization

- Network state (f, t, n) is stable (Wardrop) equilibrium iff it is stable and $f \in \partial \phi(t)$
 - $\partial \phi$ is superdifferential, e.g., a derivative if ϕ is differentiable
- As a corollary, <u>f</u> corresponds to a stable equilibrium iff max_t{φ(t) (f, t)} is solvable

Tractability and comparison

- Sufficient conditions for equilibrium
 - -t <u>t</u> (natural lower bound on travel times)
 - -f \bar{f} (natural upper bound on arc capacities)
- Using the potential function, can rephrase equilibrium in terms of OD-demands
- Problem allows reformulation as LP (for efficient computation)
- Consistent with queering model
- Classical Beckmann model detects congestions "too late" and, thus, systematically underestimates congestion

Extensions

- Tractable network design is possible (over arc capacities and shortest times)
 - minimize "social distance" (average travel time), as a byproduct increase congestion on most attractive arcs
 - maximize "social distance" while offloading most popular (congested) arcs
 - e.g., traffic lights or lane direction inversion

Analysis ingredients

- Graph theory
- Variation inequalities/calculus
- Convex analysis/optimization
- Selected references
 - Yurii Nesterov, Stable Traffic Equilibria: Properties and Applications
 - Andre de Palma, Yurii Nesterov, Optimization
 Formulations and Static Equilibrium in Congested
 Transportation Networks