Endoscopy and the geometry of the Hitchin fibration

Pierre-Henri Chaudouard

I.M.J. and Université Paris 7-Denis Diderot

Fields Institute October 15 2012

Orbital integrals

- Let F be a local field (ℝ, ℂ or a finite extension of ℚ_p).
 Let G be a connected reductive group over F.
- Amongst the most important invariant distributions on G(F) are the orbital integrals associated to regular semisimple elements γ ∈ G(F) :

$$\mathcal{O}_{\gamma}^{G}(f) = \int_{G_{\gamma}(F) \setminus G(F)} f(g^{-1}\gamma g) \, d\dot{g}$$

where

- $f \in C^\infty_c(G(F))$ is a test function
- G_{γ} is the centralizer of γ
- *O*^G_γ depends on the choice of an invariant measure dġ on the orbit *G*_γ(*F*)*G*(*F*). We may assume that *O*^G_γ depends only the conjugacy class of *γ*.

Stable orbital integrals

- We can only expect a transfer of stable conjugacy classes between inner forms of the group *G*.
- Here stable means conjugacy classes of $G(\overline{F})$ where \overline{F} is an algebraic closure of F.
- The stable orbital integral attached to a regular semisimple stable conjugacy class *σ* is

$$\mathcal{SO}^{\sf G}_{\sigma}(f) = \sum_{\gamma} \mathcal{O}^{\sf G}_{\gamma}(f)$$

where the sum is over the finite set of conjugacy classes of γ inside $\sigma.$

The Arthur-Selberg trace formula

- In this slide the group G is over a number field F.
- Langlands functoriality predicts deep reciprocity laws between the automorphic spectra of *G* and its inner forms.
- The Arthur-Selberg trace formula is roughly the equality

$$\operatorname{trace}(f|\operatorname{\mathsf{automorph.}}\ \operatorname{\mathsf{spectrum}}) = \sum_{\gamma} a_{\gamma} \prod_{\nu} \mathcal{O}_{\gamma}^{\nu}(f)$$

where

- f is a test function.
- The sum is over regular semi-simple conjugacy classes γ in G(F).
- Π_ν O^ν_γ(f) is a product over completions F_ν of F of local orbital integrals of G(F_ν).
- a_{γ} is a global coefficient (a volume).
- A basic strategy to prove Langlands functoriality for inner forms is to compare the geometric sides of the trace formulas.

The endoscopy

- Main Problem : The trace formula is not stable: it is not a sum of products of local stable orbital integrals.
- The difference between the trace formula and its stable counterpart can be expressed as a sum of products of local distributions

$$\sum_{\gamma \in G(F)/\sim} \Delta_H(\sigma,\gamma) \mathcal{O}_{\gamma}^{\mathsf{G}}(f)$$

indexed by endoscopic groups H and regular semisimple stable conjugacy classes σ of H(F). The function $\Delta_H(\sigma, \gamma)$ is the Langlands-Shelstad transfer factor: it vanishes unless the stable conjugacy class of γ matches σ .

• It is in fact possible to interpret the unstable part of the trace formula as a stable trace formula for endoscopic groups. But for this we need the following two statements in local harmonic analysis.

Two statements in local Harmonic Analysis

Theorem (Langlands-Shelstad transfer)

Let H be an endoscopic group of G. For any $f \in C_c^{\infty}(G(F))$, there exists $f^H \in C_c^{\infty}(H(F))$ s.t. for any stable conjugacy class σ of H(F)

$$\sum_{\gamma \in G(F)/\sim} \Delta_H(\sigma,\gamma) \mathcal{O}^{\mathcal{G}}_{\gamma}(f) = \mathcal{S} \mathcal{O}^{\mathcal{H}}_{\sigma}(f^{\mathcal{H}})$$

Theorem (Langlands-Shelstad fundamental lemma) F is p-adic and G and H are unramified. If f is the characteristic function of a hyperspecial maximal compact subgroup of G(F), one may take for f^H the characteristic function of a hyperspecial maximal compact subgroup of H(F).

3 reductions

1. Reduction to the units

- Shelstad proved the transfer for archimedean fields.
- The Fundamental Lemma (FL) ⇒ the *p*-adic transfer for the spherical Hecke algebra (Hales).
- (FL) \implies the *p*-adic transfer (Waldspurger).
- 2. From the group to the Lie algebra
 - (FL) \iff a variant of (FL) for Lie algebras (Hales, Waldspurger)
- 3. Reduction to the case of local fields of equal characteristics For Lie algebras, we have
 - (FL) for p-adic field with residual field F_q is equivalent to (FL) for local fields F_q((ε)). (Waldspurger / Cluckers-Hales-Loeser)

The fundamental lemma for the Lie algebra of SL(2)

- Let $F = \mathbb{F}_q((\varepsilon))$, $\mathcal{O}_F = \mathbb{F}_q[[\varepsilon]]$, \mathbb{F}_q is finite of *char*. > 2.
- Let G = SL(2) and $\mathfrak{g} = Lie(G)$.
- Let $\alpha \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ s.t. $\alpha^2 \in \mathbb{F}_q$ and $E = F[\alpha] \supset \mathcal{O}_E$.
- The group H(F) = {x ∈ E | Norm_{E/F}(x) = 1} is an unramified endoscopic group of G.
- Any $a \in F^{\times}$ determines a regular characteristic polynomial

$$X^2 - (\alpha a)^2 \in F[X]$$

and two distinct G(F)-conjugacy classes in $\mathfrak{g}(F)$ namely those of

$$\gamma_{a} = \begin{pmatrix} 0 & (\alpha a)^{2} \\ 1 & 0 \end{pmatrix}$$
 and $\gamma'_{a} = \begin{pmatrix} 0 & \varepsilon^{-1}(\alpha a)^{2} \\ \varepsilon & 0 \end{pmatrix}$

The (FL) is the equality

$$q^{-\operatorname{val}(\operatorname{a})}\mathcal{O}^{\mathsf{G}}_{\gamma_{\operatorname{a}}}(\mathbf{1}_{\operatorname{\mathfrak{g}}(\mathcal{O}_{\mathsf{F}})}) - q^{-\operatorname{val}(\operatorname{a})}\mathcal{O}^{\mathsf{G}}_{\gamma'_{\operatorname{a}}}(\mathbf{1}_{\operatorname{\mathfrak{g}}(\mathcal{O}_{\mathsf{F}})}) = \mathbf{1}_{\mathcal{O}_{\mathsf{E}}}(\operatorname{a}\alpha)$$

Cohomological interpretation

In the case of the Fundamental Lemma for Lie algebras over $\mathbb{F}_q((t))$, we have:

- The orbital integrals 'compute' the number of rational points of varieties over \mathbb{F}_q , some quotients of Affine Springer fibers.
- Thanks to the Grothendieck function-sheaf dictionary this gives a cohomological approach to the (FL).
- Ngô indeed proves the (FL) by a cohomological study of the elliptic part of the Hitchin fibration.

The example of GL(n)

Let $F = \mathbb{F}_q((\varepsilon)) \supset \mathcal{O} = \mathbb{F}_q[[\varepsilon]]$. Let G = GL(n) and $\mathfrak{g} = Lie(G)$ with $n > char(\mathbb{F}_q)$.

- Let $\gamma \in \mathfrak{g}(F)$ be regular semisimple.
- Let Λ_γ ⊂ G_γ(F) be the image of the discrete group of F-rational cocharacters of G_γ by ε → ε^λ.
- Let $d\dot{g}$ be the quotient of Haar measures on G(F) and $G_{\gamma}(F)$ normalized by

$$\mathsf{vol}(\mathcal{G}(\mathcal{O}_{\mathcal{F}})) = 1 \text{ and } \mathsf{vol}(\Lambda_{\gamma} ackslash \mathcal{G}_{\gamma}(\mathcal{F})) = 1$$

Proposition We have

$$\int_{G_\gamma(F) \setminus G(F)} \mathbf{1}_{\mathfrak{g}(\mathcal{O})}(g^{-1}\gamma g) \, d\dot{g} = | \Lambda_\gamma ackslash \mathfrak{X}_\gamma |$$

where \mathfrak{X}_{γ} is the set of lattices $\mathcal{L} \subset F^n$ s.t. $\gamma \mathcal{L} \subset \mathcal{L}$.

The group Λ_{γ} acts on \mathfrak{X}_{γ} through the action of G(F) on the set of lattices.

Affine Springer fiber ...

The set of lattices \mathfrak{X} is an increasing union of projective varieties called the Affine Grassmaniann. The Affine Springer fiber is the closed (ind-)subvariety $\mathfrak{X}_{\gamma} \subset \mathfrak{X}$.

Theorem (Kazhdan-Lusztig)

- *X*_γ is a variety locally of finite type and of finite dimension.
- The quotient $\Lambda_{\gamma} \setminus \mathfrak{X}_{\gamma}$ is a projective variety.

Example G = GL(2) and $\gamma = \begin{pmatrix} \varepsilon & 0 \\ 0 & -\varepsilon \end{pmatrix}$. Then \mathfrak{X}_{γ} is $\mathbb{Z} \times$ an infinite chain of \mathbf{P}^1

... and its quotient

When one takes the quotient by $\Lambda_{\gamma} \simeq \mathbb{Z}^2$, one gets

Back to the (FL) for SL(2)

Let G = SL(2) and $\alpha \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$

$$\gamma_{\varepsilon} = \left(\begin{array}{cc} 0 & \alpha^2 \varepsilon^2 \\ 1 & 0 \end{array}\right) \text{ and } \gamma_{\varepsilon}' = \left(\begin{array}{cc} 0 & \alpha^2 \varepsilon \\ \varepsilon & 0 \end{array}\right) \in \mathfrak{g}(F)$$

 $\mathcal{O}_{\gamma_{\varepsilon}} = q + 1$ and $\mathcal{O}_{\gamma'_{\varepsilon}} = 1$ are the number of fixed points of two twisted Frobenius of a connected component of \mathfrak{X}_{γ} .

(FL) is given by the equality $q^{-1}(q+1) - q^{-1} imes 1 = 1$

Work of Goresky-Kottwitz-MacPherson

- For γ "equivalued" and unramified, they computed the cohomology of $\mathfrak{X}_{\gamma}.$
- $\mathcal{O}_{\gamma} = |(\Lambda_{\gamma} \setminus \mathfrak{X}_{\gamma})(\mathbb{F}_q)| = \operatorname{trace}(\operatorname{Frob}_q, H^{\bullet}(\Lambda_{\gamma} \setminus \mathfrak{X}_{\gamma}, \overline{\mathbb{Q}}_{\ell})).$
- For such γ , they proved the Fundamental Lemma.

Remarks

- They need that γ is "equivalued" to prove that the cohomology of \mathfrak{X}_{γ} is pure.
- It is conjectured that this cohomology is always pure.
- They need that γ is unramified since they first compute the equivariant cohomology of \mathfrak{X}_{γ} for the action of a "big" torus.

Ngô's global approach

- Let C be a connected, smooth, projective curve over $k = \overline{\mathbb{F}_q}$
- Let D = 2D' be an even and effective divisor on C of degree > 2g with g the genus of C. Let n > char(k).
- A Higgs bundle is a pair (\mathcal{E}, θ) s.t.
 - \mathcal{E} is a vector bundle on C of rank n and degree 0
 - $\theta : \mathcal{E} \to \mathcal{E}(D) = \mathcal{E} \otimes_{\mathcal{O}_{\mathcal{C}}} \mathcal{O}_{\mathcal{C}}(D)$ is a twisted endomorphism.

For such a pair, we have

- trace(θ) : $\mathcal{O}_C \xrightarrow{id} \mathcal{E}nd(\mathcal{E}) \xrightarrow{\theta} \mathcal{O}_C(D) \in H^0(C, \mathcal{O}_C(D))$
- $a_i(\theta) := \operatorname{trace}(\wedge^i \theta) \in H^0(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(iD))$

The characteristic polynomial of (\mathcal{E}, θ) is then defined by

$$\chi_{\theta} = X^n - a_1(\theta)X^{n-1} + \ldots + (-1)^n a_n(\theta) \in \bigoplus_i H^0(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(iD))$$

Hitchin fibration

- Let **M** be the algebraic *k*-stack of Higgs bundles (\mathcal{E}, θ)
- Let A be the affine space of characteristic polynomials

$$X^n - a_1 X^{n-1} + \ldots + (-1)^n a_n$$

with $a_i \in H^0(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(iD))$. By Riemann-Roch theorem

$$\dim_k(\mathbf{A}) = \frac{n(n+1)}{2}\deg(D) + n(1-g)$$

• The Hitchin fibration is the morphism

$$f: \mathbf{M} \to \mathbf{A}$$

defined by

$$f(\mathcal{E}, heta) = \chi_{ heta}$$

Adelic description of Hitchin fibers

- Let F = k(C) the function field of C.
- Let G = GL(n) and $\mathfrak{g} = Lie(GL(n))$.
- A ring of adèles of F and $\mathcal{O} = \prod_{c \in |C|} \hat{\mathcal{O}}_c \subset \mathbb{A}$

• Let
$$arpi_D = (arpi_c^{\textit{mult}_c(D)})_{c \in |C|} \in \mathbb{A}^{ imes}$$

• Let $\chi \in \mathbf{A}(k)$ and \mathcal{H}_{χ} be the set of

$$(g,\gamma)\in G(\mathbb{A})/G(\mathcal{O}) imes\mathfrak{g}(F)$$
 s.t.

1. deg(det(g)) = 0
2.
$$\chi_{\gamma} = \chi$$

3. $g^{-1}\gamma g \in \varpi_D^{-1}\mathfrak{g}(\mathcal{O})$

• The group G(F) acts on \mathcal{H}_{χ} by $\delta \cdot (g, \gamma) = (\delta g, \delta \gamma \delta^{-1})$

Lemma

The Hitchin fibre $f^{-1}(\chi)(k)$ is the quotient groupoid $[G(F)\setminus \mathcal{H}_{\chi}]$.

Counting points of elliptic Hitchin fibers

Let $\mathbf{A}^{ell} \subset \mathbf{A}^{\textit{rss}} \subset \mathbf{A}$ be the open subsets defined by

- $\mathbf{A}^{\text{ell}} = \{ \chi \in \mathbf{A}^{\text{ell}} \mid \chi \text{ is irreducible in } F[X] \}$
- $\mathbf{A}^{rss} = \{ \chi \in \mathbf{A}^{\text{ell}} \mid \chi \text{ is square-free in } F[X] \}$

Lemma (Ngô)

Let $\chi \in \mathbf{A}^{rss}$ and $\gamma \in \mathfrak{g}(F)$ s.t. $\chi_{\gamma} = \chi$. Let $(\gamma_c)_c = \varpi_D \gamma \in \mathfrak{g}(\mathbb{A})$. We have

$$f^{-1}(\chi)(k)\simeq [{\mathcal G}(F)ackslash {\mathcal H}_{\chi}]\simeq [{\mathcal T}(F)ackslash \prod_{c\in |{\mathcal C}|}{\mathfrak X}_{\gamma_c}(k)]$$

where T is the centralizer of γ in G and \mathfrak{X}_{γ_c} is an affine Springer fiber. Moreover if $k = \mathbb{F}_q$, we have

$$|f^{-1}(\chi)(\mathbb{F}_q)| = \operatorname{vol}(T(F) \setminus T(\mathbb{A})^0) \prod_c \mathcal{O}_{\gamma_c}$$

where $\operatorname{vol}(T(F) \setminus T(\mathbb{A})^0) < \infty$ iff $\chi \in \mathbf{A}^{\operatorname{ell}}(\mathbb{F}_q)$.

A slight variant of the Hitchin fibration

Let $\infty \in C$ a closed point, $\infty \notin \text{supp}(D)$. Let $\mathbf{A}^{\infty} \subset \mathbf{A}^{rss}$ be the open subset of $\chi \in \mathbf{A}$ such that χ_{∞} has only simple roots.

Let \mathcal{A} be the étale Galois cover of \mathbf{A}^{∞} of group \mathfrak{S}_n given by

$$\mathcal{A} = \{(\chi, \tau) \in \mathbf{A}^{\infty} \times k^{n} | \chi_{\infty} = \prod_{i=1}^{n} (X - \tau_{i}) \}$$

Let $(\mathcal{E}, \theta, \chi_{\theta}, \tau) \in \mathbf{M} \times_{\mathbf{A}} \mathcal{A}$. Then θ_{∞} is a regular semi-simple endomorphism of \mathcal{E}_{∞} . Let

$$\mathcal{M} \to \mathbf{M} \times_{\mathbf{A}} \mathcal{A}$$

be the \mathbb{G}_m -torsor we obtain by choosing an eigenvector e_1 in the line Ker $(\theta_{\infty} - \tau_1 \operatorname{Id}_{\mathcal{E}_{\infty}})$. Remark The additional datum e_1 "kills" the automorphisms coming from the center of G. By base change, we have a Hitchin fibration still denoted f

$$\mathcal{M} \to M \times_A \mathcal{A} \to \mathcal{A}$$

So \mathcal{M} classifies $(\mathcal{E}, \theta, \tau, e_1)$ s.t.

- (\mathcal{E}, θ) is Higgs bundle s.t. θ_∞ is regular semi-simple
- $\tau = (\tau_1, \dots, \tau_n)$ is the ordered collection of eigenvalues of θ_∞
- $e_1 \in \mathcal{E}_{\infty}$ is an eigenvector of $(\theta_{\infty}, \tau_1)$.

By deformation theory, we have

Theorem (Biswas-Ramanan)

The algebraic stack \mathcal{M} is smooth over k.

The spectral curve of Hitchin-Beauville-Narasimhan-Ramanan

Let $\Sigma_D = Spec(\bigoplus_{i=0}^{\infty} \mathcal{O}_C(-iD)X^i) \to C$ the whole space of the divisor D. Let $a = (\chi, \tau) \in \mathcal{A}$. The spectral curve Y_a is the closed curve in Σ_D defined by the equation

$$\chi(X) = X^n - a_1 X^{n-1} + \ldots + (-1)^n a_n = 0.$$

The canonical projection $\pi_a: Y_a \to C$ is a finite cover of degree *n*, which is étale over ∞ . We have a natural identification

$$\pi_a^{-1}(\infty) = \{\infty_1, \ldots, \infty_n\} \cong \{\tau_1, \ldots, \tau_n\}.$$

Properties of the spectral curve Y_a

Recall $a = (\chi, \tau) \in \mathcal{A}$

- Y_a is reduced (since $\chi \in \mathbf{A}^{rss}$)
- Y_a is connected
- Y_a is not always irreducible: Y_a is irreducible ⇔ a ∈ A^{ell} (there are as many irreducible components of Y_a as irreducible factors of χ ∈ F[X])
- Its arithmetic genus defined by

$$q_{Y_a} = \dim(H^1(Y_a, \mathcal{O}_{Y_a})) = \dim(H^1(C, \pi_{a,*}\mathcal{O}_{Y_a}))$$

does not depend on a. In fact,

$$\pi_{a,*}\mathcal{O}_{Y_a} = \mathcal{O}_{\mathcal{C}} \oplus \mathcal{O}_{\mathcal{C}}(-D) \oplus \ldots \oplus \mathcal{O}((-n+1)D)$$

and $q_{Y_a} = \frac{n(n-1)}{2} \deg(D) + n(g-1) + 1.$

Hitchin-Beauville-Narasimhan-Ramanan correspondence

Theorem (H-BNR)

Let $a \in A$. The Hitchin fiber $\mathcal{M}_a = f^{-1}(a)$ is isomorphic to the stack of torsion-free coherent \mathcal{O}_{Y_a} -modules \mathcal{F} of degree 0 and rank 1 at generic points of Y_a , equipped with a trivialization of their stalk at ∞_1 .

Construction: the multiplication by X gives a section

$$\mathcal{O}_{Y_a} \to \pi^*_a \mathcal{O}_C(D).$$

For such a \mathcal{F} , we get a morphism $\mathcal{F} \to \mathcal{F} \otimes_{\mathcal{O}_{Y_a}} \pi^*_a \mathcal{O}_{\mathcal{C}}(D)$ and

$$\theta: \pi_{a,*}\mathcal{F} \to \pi_{a,*}(\mathcal{F} \otimes_{\mathcal{O}_{Y_a}} \pi_a^* \mathcal{O}_C(D)) = \pi_{a,*}(\mathcal{F})(D)$$

We associate to \mathcal{F} the Higgs bundle $(\pi_{a,*}\mathcal{F} \otimes_{\mathcal{O}_{\mathcal{C}}} \mathcal{O}_{\mathcal{C}}(\frac{n-1}{2}D), \theta)$.

Let \mathcal{A}^{sm} the open set of *a* such that Y_a is smooth. One has $\mathcal{A}^{sm} \neq \emptyset$.

Corollary

For $a \in A^{sm}$, the Hitchin fiber \mathcal{M}_a is the Jacobian of Y_a . In particular, it is an abelian variety.

Let $a \in A$.

Let $\operatorname{Pic}^{0}(Y_{a})$ the smooth commutative group scheme of line bundles on Y_{a} of degree 0, equipped with a trivialization of their stalk at ∞_{1} .

By H-BNR correspondence, $\operatorname{Pic}^{0}(Y_{a})$ acts on \mathcal{M}_{a} .

Let $\mathcal{M}_a^{\text{reg}} \subset \mathcal{M}_a$ be the open sub-stack $(\mathcal{E}, \theta, \tau, e_1) \in \mathcal{M}_a$ such that θ_c is regular for any $c \in C$.

Lemma

 $\mathcal{M}_a^{\mathsf{reg}}$ is a $\operatorname{Pic}^0(Y_a)$ -torsor.

Dimension of Hitchin fibers \mathcal{M}_a

As a consequence of the work of Altmann-Iarrobino-Kleiman on compactified Jacobian, Ngô gets the following theorem

Theorem

- $\mathcal{M}_a^{\text{reg}}$ is dense in \mathcal{M}_a .
- dim(M_a) = dim(M_a^{reg}) = dim(Pic⁰(Y_a)) = q_{Y_a} (=arithmétic genus of Y_a) does not depend on a.
- $Irr(\mathcal{M}_a)$ is a torsor under the abelian group $\pi_0(\operatorname{Pic}^0(Y_a)) \simeq \{(n_i) \in \mathbb{Z}^{Irr(Y_a)} \mid \sum_i n_i = 0\}$

Corollary

- dim $(\mathcal{M}) = n^2 \deg(D) + 1$.
- \mathcal{M}_a is irreducible if and only if $a \in \mathcal{A}^{ell}$.

Some examples

In the first 3 pictures, Y_a is irreducible and $\mathcal{M}_a \simeq Y_a$.

Support theorem on the elliptic locus

As a consequence of results of Altmann-Kleiman, the elliptic Hitchin morphism

$$f^{\mathsf{ell}}: \mathcal{M}^{\mathsf{ell}} = \mathcal{M} imes_{\mathcal{A}} \mathcal{A}^{\mathsf{ell}} o \mathcal{A}^{\mathsf{ell}}$$

is proper and \mathcal{M}^{ell} is a smooth scheme over k. By Deligne theorem, the complex of ℓ -adic sheaves $Rf_*^{\text{ell}}\bar{\mathbb{Q}}_{\ell}$ is pure. By Beilinson-Bernstein-Deligne-Gabber decomposition theorem, the direct sum of its perverse cohomology sheaves is semi-simple:

$${}^{p}\mathcal{H}^{\bullet}(Rf^{\mathrm{ell}}_{*}\bar{\mathbb{Q}}_{\ell}) = \bigoplus_{i} {}^{p}\mathcal{H}^{i}(Rf^{\mathrm{ell}}_{*}\bar{\mathbb{Q}}_{\ell})$$

Theorem (Ngô's support theorem)

The support of any irreducible constituent of ${}^{\mathcal{P}}\mathcal{H}^{\bullet}(Rf_{G,*}^{\text{ell}}\bar{\mathbb{Q}}_{\ell})$ is \mathcal{A}^{ell} . Remarks

- The theorem is in fact only proved on a big subset of A.
- Orbital integrals are "limits" of the simplest orbital integrals.

For other reductive groups G?

- The support theorem is not true as stated.
- Let's consider the example G = SL(2). The Hitchin space \mathcal{M}_G classifies $(\mathcal{E}, \theta, \tau, e_1)$ as before with
 - \mathcal{E} is a vector bundle of degree 2 and trivial determinant $det(\mathcal{E}) = \mathcal{O}_C$.
 - $\theta: \mathcal{E} \to \mathcal{E}(D)$ is a traceless twisted endomorphism.
- The Hitchin base \mathcal{A}_G classifies pairs $a = (X^2 a_2, \tau)$ where $a_2 \in H^0(C, \mathcal{O}(2D))$ s.t. $a_2(\infty) = \tau^2 \neq 0$.
- We have a Hitchin morphism $f : \mathcal{M}_G \to \mathcal{A}_G$ defined by $f(\mathcal{E}, \theta, \tau, e_1) = (\det(\theta), \tau)$.
- A Hitchin fiber M_a is isomorphic to the stack of rank 1, torsionfree O_{Y_a}-modules F which satisfy det(π_{a,*}F(^D/₂)) = O_C
- The group P_a acts on \mathcal{M}_a .

$$P_a := \operatorname{Ker}(\operatorname{Norm} : \operatorname{Pic}^0(Y_a) \to \operatorname{Pic}^0(C)).$$

The example of SL(2)

- Let $a \in \mathcal{A}^{\text{ell}}$ and $\rho_a : X_a \to C$ obtained from the normalization $X_a \to Y_a$ and $\pi_a : Y_a \to C$.
- Either the group P_a is connected or $\pi_0(P_a) = \mathbb{Z}/2\mathbb{Z}$.
- P_a is not connected iff ρ_a : X_a → C is étale.
 Let L ∈ Pic⁰(C)[2] attached to X_a. Moreover there exists

$$b \in H^0(C, \mathcal{L}(D))$$

s.t. $b^{\otimes 2} = a_2$.

The groups P_a come in a family P/A^{ell} with a natural morphism

$$\mathbb{Z}/2\mathbb{Z} \to \pi_0(P/\mathcal{A}^{\mathsf{ell}}).$$

• The group P acts on ${}^{P}\!\mathcal{H}^{\bullet}(Rf_{G,*}^{\text{ell}}\bar{\mathbb{Q}}_{\ell})$ through $\pi_{0}(P/\mathcal{A}^{\text{ell}})$

$${}^{p}\!\mathcal{H}^{\bullet}(Rf^{\mathrm{ell}}_{G,*}\bar{\mathbb{Q}}_{\ell}) = {}^{p}\!\mathcal{H}^{\bullet}(Rf^{\mathrm{ell}}_{G,*}\bar{\mathbb{Q}}_{\ell})_{+} \oplus {}^{p}\!\mathcal{H}^{\bullet}(Rf^{\mathrm{ell}}_{G,*}\bar{\mathbb{Q}}_{\ell})_{-}$$

Support theorem for SL(2)

• For any non-trivial $\mathcal{L} \in Pic^0(\mathcal{C})[2]$,

$$\mathcal{A}_{\mathcal{L}} = \{ b \in H^0(\mathcal{C}, \mathcal{L}(D)) \mid b(\infty) \neq 0 \}.$$

- The map $b \mapsto (b^{\otimes 2}, b(\infty))$ defines a closed immersion $\mathcal{A}_{\mathcal{L}} \hookrightarrow \mathcal{A}_{G}^{\text{ell}}$.
- The $\mathcal{A}_{\mathcal{L}}$ are disjoint.

Theorem (Ngô's support theorem)

- 1. The support of any irreducible constituent of ${}^{\mathcal{P}}\mathcal{H}^{\bullet}(Rf_{G,*}^{\text{ell}}\bar{\mathbb{Q}}_{\ell})_{+}$ is $\mathcal{A}_{G}^{\text{ell}}$.
- The supports of irreducible constituents of ^pH[●](Rf^{ell}_{G,*}Q
 ℓ)− are the A_L.

Cohomological fundamental lemma for SL(2)

 Any non-trivial L ∈ Pic⁰(C)[2] defines an étale cover X_L → C and an endoscopic group scheme on C

$$H_{\mathcal{L}} = (X_{\mathcal{L}} \times \mathbb{G}_m)/\{\pm 1\}$$

• For $H = H_{\mathcal{L}}$, we have a Hitchin morphism $f^H : \mathcal{M}_H \to \mathcal{A}_H$ with $\mathcal{A}_H = \mathcal{A}_{\mathcal{L}}$.

Theorem (Ngô) Let $\iota_H : \mathcal{A}_H \to \mathcal{A}_G$. We have up to a shift and a twist

$$\iota_{H}^{*} {}^{p}\!\mathcal{H}^{\bullet}(Rf_{G,*}^{\mathsf{ell}}\bar{\mathbb{Q}}_{\ell})_{-} \simeq {}^{p}\!\mathcal{H}^{\bullet}(Rf_{H,*}\bar{\mathbb{Q}}_{\ell})$$

By the Grothendieck-Lefschetz trace formula, this gives a global version of the fundamental lemma for G = SL(2).

GL(n) case : outside the elliptic locus

- The properness of *f*^{ell} is crucial in Ngô's proof.
- Outside A^{ell}, the Hitchin fibration is neither of finite type nor separeted.
- To get Arthur's weighted fundamental lemma, we have to look outside $\mathcal{A}^{\text{ell}}.$
- For each $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, let's say that $m = (\mathcal{E}, \theta, \tau, e_1) \in \mathcal{M}$ is ξ -stable iff for any θ -invariant sub-bundle

 $0 \subsetneq \mathcal{F} \subsetneq \mathcal{E}$

one has

$$\mathsf{deg}(\mathcal{F}) + \sum_i \xi_i < 0$$

where the sum is over *i* s.t. τ_i is an eigenvalue $of \theta_{|\mathcal{F}_{\infty}}$.

Remarks there is only a finite number of θ -invariant \mathcal{F} and none if (\mathcal{E}, θ) is elliptic.

Properness of \mathcal{M}^{ξ}

Let \mathcal{M}^{ξ} be the ξ -stable sub-stack of \mathcal{M} for a generic ξ . Theorem (Laumon-C.)

- 1. \mathcal{M}^{ξ} is an smooth open sub-stack of \mathcal{M} which contains \mathcal{M}^{ell} .
- 2. The ξ -stable Hitchin fibration is proper.

$$f^{\xi}:\mathcal{M}^{\xi}
ightarrow\mathcal{A}$$

- 3. For $a \in \mathcal{A}(\mathbb{F}_q)$, $|\mathcal{M}_a^{\xi}(\mathbb{F}_q)|$ does not depend on ξ and is a global Arthur's weighted orbital integral.
- Support theorem. The support of any irreducible constituent of ^pH[●](Rf^ξ_{G,*}Q

 _ℓ) is A.

Here ξ generic means $\sum_{i \in I} \xi_i \notin \mathbb{Z}$ for any $\emptyset \neq I \subsetneq \{1, \dots, n\}$

A spectral curve with 2 components

Let's go back to the example: $C = \mathbb{P}_k^1 \supset \operatorname{Spec}(k[y]) \ni \infty$, D = 2[0], n = 2. Let $a = (X^2 - (y^2 - 1)^2, (1, -1)) \in \mathcal{A}$. In this case, Y_a has 2 irreducible components and looks like

An non-elliptic fiber

 \mathcal{M}_a is the quotient of the product of 2 Affine Springer fibers by the diagonal action of \mathbb{G}_m and the antidiagonal action of \mathbb{Z}

An non-elliptic fiber

The action of \mathbb{G}_m stabilizes each square with 1-dim. orbits, fixed points and in black the quotient by \mathbb{G}_m

An non-elliptic fiber

Up to some $B\mathbb{G}_m$, \mathcal{M}_a looks like an infinite chain of non-separeted \mathbf{P}^1 with double 0 and double ∞ .

Stable part of \mathcal{M}_a

Semi-stable part of \mathcal{M}_a

ξ -stable part of \mathcal{M}_a , ξ generic

We get ...

