Endoscopy and the geometry of the Hitchin fibration

Pierre-Henri Chaudouard

I.M.J. and Université Paris 7-Denis Diderot

Fields Institute October 15 2012

Orbital integrals

- Let F be a local field (\mathbb{R}, \mathbb{C}) or a finite extension of \mathbb{Q}_p). Let G be a connected reductive group over F .
- Amongst the most important invariant distributions on $G(F)$ are the orbital integrals associated to regular semisimple elements $\gamma \in G(F)$:

$$
\mathcal{O}_{\gamma}^{\mathcal{G}}(f) = \int_{\mathcal{G}_{\gamma}(F)\backslash\mathcal{G}(F)} f(g^{-1}\gamma g) \,d\dot{g}
$$

where

- $f \in C_c^\infty(G(F))$ is a test function
- G_{γ} is the centralizer of γ
- \bullet \mathcal{O}_γ^G depends on the choice of an invariant measure $d\dot{g}$ on the orbit $\mathsf{G}_{\gamma}(\mathsf{F})\backslash\mathsf{G}(\mathsf{F})$. We may assume that $\mathcal{O}_\gamma^{\boldsymbol{G}}$ depends only the conjugacy class of γ .

Stable orbital integrals

- We can only expect a transfer of stable conjugacy classes between inner forms of the group G.
- Here stable means conjugacy classes of $G(\overline{F})$ where \overline{F} is an algebraic closure of F.
- The stable orbital integral attached to a regular semisimple stable conjugacy class σ is

$$
\mathcal{SO}_{\sigma}^{\mathsf{G}}(f)=\sum_{\gamma}\mathcal{O}_{\gamma}^{\mathsf{G}}(f)
$$

where the sum is over the finite set of conjugacy classes of γ inside σ .

The Arthur-Selberg trace formula

- In this slide the group G is over a number field F .
- Langlands functoriality predicts deep reciprocity laws between the automorphic spectra of G and its inner forms.
- The Arthur-Selberg trace formula is roughly the equality

trace(*f*|automorph. spectrum) =
$$
\sum_{\gamma} a_{\gamma} \prod_{v} \mathcal{O}_{\gamma}^{v}(f)
$$

where

- \bullet f is a test function.
- The sum is over regular semi-simple conjugacy classes γ in $G(F)$.
- $\bullet~~\prod_{v}{\mathcal O}_\gamma^v(f)$ is a product over completions F_{v} of F of local orbital integrals of $G(F_v)$.
- a_{γ} is a global coefficient (a volume).
- A basic strategy to prove Langlands functoriality for inner forms is to compare the geometric sides of the trace formulas.

The endoscopy

- Main Problem : The trace formula is not stable: it is not a sum of products of local stable orbital integrals.
- The difference between the trace formula and its stable counterpart can be expressed as a sum of products of local distributions

$$
\sum_{\gamma \in \mathsf{G}(\mathsf{F})/\sim} \Delta_{\mathsf{H}}(\sigma, \gamma) \mathcal{O}^{\mathsf{G}}_{\gamma}(f)
$$

indexed by endoscopic groups H and regular semisimple stable conjugacy classes σ of $H(F)$. The function $\Delta_H(\sigma, \gamma)$ is the Langlands-Shelstad transfer factor: it vanishes unless the stable conjugacy class of γ matches σ .

• It is in fact possible to interpret the unstable part of the trace formula as a stable trace formula for endoscopic groups. But for this we need the following two statements in local harmonic analysis.

Two statements in local Harmonic Analysis

Theorem (Langlands-Shelstad transfer)

Let H be an endoscopic group of G. For any $f \in C_c^{\infty}(G(F))$, there exists $f^H\in \mathcal{C}^\infty_c(H(F))$ s.t. for any stable conjugacy class σ of $H(F)$

$$
\sum_{\gamma \in \mathsf{G}(\mathsf{F}) / \sim} \Delta_{\mathsf{H}}(\sigma, \gamma) \mathcal{O}^{\mathsf{G}}_{\gamma}(\mathsf{f}) = \mathcal{SO}_{\sigma}^{\mathsf{H}}(\mathsf{f}^{\mathsf{H}})
$$

Theorem (Langlands-Shelstad fundamental lemma)

F is p-adic and G and H are unramified.

If f is the characteristic function of a hyperspecial maximal compact subgroup of $G(F)$, one may take for f^H the characteristic function of a hyperspecial maximal compact subgroup of $H(F)$.

3 reductions

1. Reduction to the units

- Shelstad proved the transfer for archimedean fields.
- The Fundamental Lemma $(FL) \implies$ the p-adic transfer for the spherical Hecke algebra (Hales).
- (FL) \implies the *p*-adic transfer (Waldspurger).
- 2. From the group to the Lie algebra
	- (FL) \Longleftrightarrow a variant of (FL) for Lie algebras (Hales, Waldspurger)
- 3. Reduction to the case of local fields of equal characteristics For Lie algebras, we have
	- (FL) for p-adic field with residual field \mathbb{F}_q is equivalent to (FL) for local fields $\mathbb{F}_q((\varepsilon))$. (Waldspurger / Cluckers-Hales-Loeser)

The fundamental lemma for the Lie algebra of SL(2)

- Let $F = \mathbb{F}_q((\varepsilon))$, $\mathcal{O}_F = \mathbb{F}_q[[\varepsilon]], \mathbb{F}_q$ is finite of *char.* > 2.
- Let $G = SL(2)$ and $g = Lie(G)$.
- Let $\alpha \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ s.t. $\alpha^2 \in \mathbb{F}_q$ and $E = \mathcal{F}[\alpha] \supset \mathcal{O}_E$.
- The group $H(F) = \{x \in E \mid \text{Norm}_{E/F}(x) = 1\}$ is an unramified endoscopic group of G.
- Any $a \in F^{\times}$ determines a regular characteristic polynomial

$$
X^2-(\alpha a)^2\in F[X]
$$

and two distinct $G(F)$ -conjugacy classes in $g(F)$ namely those of

$$
\gamma_a = \left(\begin{array}{cc} 0 & (\alpha a)^2 \\ 1 & 0 \end{array}\right) \text{ and } \gamma'_a = \left(\begin{array}{cc} 0 & \varepsilon^{-1}(\alpha a)^2 \\ \varepsilon & 0 \end{array}\right)
$$

• The (FL) is the equality

$$
q^{-\text{val}(a)}\mathcal{O}_{\gamma_a}^G(\mathbf{1}_{\mathfrak{g}(\mathcal{O}_F)})-q^{-\text{val}(a)}\mathcal{O}_{\gamma_a'}^G(\mathbf{1}_{\mathfrak{g}(\mathcal{O}_F)})=\mathbf{1}_{\mathcal{O}_E}(a\alpha)
$$

Cohomological interpretation

In the case of the Fundamental Lemma for Lie algebras over $\mathbb{F}_q((t))$, we have:

- The orbital integrals 'compute' the number of rational points of varieties over \mathbb{F}_q , some quotients of Affine Springer fibers.
- Thanks to the Grothendieck function-sheaf dictionary this gives a cohomological approach to the (FL).
- Ngô indeed proves the (FL) by a cohomological study of the elliptic part of the Hitchin fibration.

The example of $GL(n)$

Let $F = \mathbb{F}_q((\varepsilon)) \supset \mathcal{O} = \mathbb{F}_q[[\varepsilon]].$ Let $G = GL(n)$ and $g = Lie(G)$ with $n > char(\mathbb{F}_q)$.

- Let $\gamma \in \mathfrak{g}(F)$ be regular semisimple.
- Let $\Lambda_{\gamma} \subset G_{\gamma}(F)$ be the image of the discrete group of F-rational cocharacters of G_γ by $\varepsilon \mapsto \varepsilon^\lambda$.
- Let $d\dot{g}$ be the quotient of Haar measures on $G(F)$ and $G_{\gamma}(F)$ normalized by

$$
\text{vol}(G(\mathcal{O}_F)) = 1 \text{ and } \text{vol}(\Lambda_\gamma \backslash G_\gamma(F)) = 1
$$

Proposition We have

$$
\int_{G_{\gamma}(F)\backslash G(F)}{\bf 1}_{\mathfrak{g}(\mathcal{O})}(g^{-1}\gamma g)\,d\dot{g}=|\Lambda_{\gamma}\backslash \mathfrak{X}_{\gamma}|
$$

where \mathfrak{X}_γ is the set of lattices $\mathcal{L}\subset\mathcal{F}^n$ s.t. $\gamma\mathcal{L}\subset\mathcal{L}.$

The group Λ_{γ} acts on \mathfrak{X}_{γ} through the action of $G(F)$ on the set of lattices.

Affine Springer fiber ...

The set of lattices $\mathfrak X$ is an increasing union of projective varieties called the Affine Grassmaniann. The Affine Springer fiber is the closed (ind-)subvariety $\mathfrak{X}_{\gamma} \subset \mathfrak{X}$.

Theorem (Kazhdan-Lusztig)

- \mathfrak{X}_{γ} is a variety locally of finite type and of finite dimension.
- The quotient $\Lambda_{\gamma}\backslash\mathfrak{X}_{\gamma}$ is a projective variety.

Example $G = GL(2)$ and $\gamma = \begin{pmatrix} \varepsilon & 0 \\ 0 & 0 \end{pmatrix}$ 0 $-\varepsilon$. Then \mathfrak{X}_{γ} is $\mathbb{Z}\times$ an infinite chain of P^1

... and its quotient

When one takes the quotient by $\Lambda_\gamma\simeq \mathbb{Z}^2$, one gets

Back to the (FL) for SL(2)

Let $G=SL(2)$ and $\alpha\in\mathbb{F}_{q^2}\setminus\mathbb{F}_q$

$$
\gamma_\varepsilon=\left(\begin{array}{cc}0&\alpha^2\varepsilon^2\\1&0\end{array}\right)\text{ and }\gamma_\varepsilon'=\left(\begin{array}{cc}0&\alpha^2\varepsilon\\ \varepsilon&0\end{array}\right)\in\mathfrak{g}(F)
$$

 $\mathcal{O}_{\gamma_\varepsilon}=\bm{{q}}+1$ and $\mathcal{O}_{\gamma_\varepsilon'}=1$ are the number of fixed points of two twisted Frobenius of a connected component of \mathfrak{X}_{γ} .

(FL) is given by the equality $q^{-1}(q+1)-q^{-1}\times 1=1$

Work of Goresky-Kottwitz-MacPherson

- For γ "equivalued" and unramified, they computed the cohomology of \mathfrak{X}_{γ} .
- $\bullet \ \ \mathcal{O}_\gamma = |(\Lambda_\gamma \backslash \mathfrak{X}_\gamma)(\mathbb{F}_q)| = \mathsf{trace}(\mathit{Frob}_q, H^\bullet(\Lambda_\gamma \backslash \mathfrak{X}_\gamma, \bar{\mathbb{Q}}_\ell)).$
- For such γ , they proved the Fundamental Lemma.

Remarks

- They need that γ is "equivalued" to prove that the cohomology of \mathfrak{X}_{γ} is pure.
- It is conjectured that this cohomology is always pure.
- They need that γ is unramified since they first compute the equivariant cohomology of \mathfrak{X}_{γ} for the action of a "big" torus.

Ngô's global approach

- Let C be a connected, smooth, projective curve over $k = \overline{\mathbb{F}_q}$
- Let $D = 2D'$ be an even and effective divisor on C of degree $> 2g$ with g the genus of C. Let $n > char(k)$.
- A Higgs bundle is a pair (\mathcal{E}, θ) s.t.
	- $\mathcal E$ is a vector bundle on C of rank n and degree 0
	- $\theta : \mathcal{E} \to \mathcal{E}(D) = \mathcal{E} \otimes_{\mathcal{O}_C} \mathcal{O}_C(D)$ is a twisted endomorphism.

For such a pair, we have

- trace (θ) : $\mathcal{O}_C \stackrel{id}{\to} \mathcal{E} nd(\mathcal{E}) \stackrel{\theta}{\to} \mathcal{O}_C(D) \in H^0(\mathcal{C}, \mathcal{O}_C(D))$
- \bullet $a_i(\theta) := \textsf{trace}(\wedge^i \theta) \in H^0(\mathcal{C}, \mathcal{O}_\mathcal{C}(iD))$

The characteristic polynomial of (\mathcal{E}, θ) is then defined by

$$
\chi_{\theta}=X^n-a_1(\theta)X^{n-1}+\ldots+(-1)^n a_n(\theta)\in \bigoplus_i H^0(C,\mathcal{O}_C(iD))
$$

Hitchin fibration

- Let M be the algebraic k-stack of Higgs bundles (\mathcal{E}, θ)
- Let A be the affine space of characteristic polynomials

$$
X^n-a_1X^{n-1}+\ldots+(-1)^n a_n
$$

with $\displaystyle{a_i \in H^0(\mathit{C}, \mathcal{O}_\mathit{C}(iD))}.$ By Riemann-Roch theorem

$$
\dim_k(\mathbf{A}) = \frac{n(n+1)}{2} \deg(D) + n(1-g)
$$

• The Hitchin fibration is the morphism

$$
f:\mathbf{M}\to\mathbf{A}
$$

defined by

$$
f(\mathcal{E},\theta)=\chi_\theta
$$

Adelic description of Hitchin fibers

- Let $F = k(C)$ the function field of C.
- Let $G = GL(n)$ and $g = Lie(GL(n))$.
- $\bullet \hspace{0.1cm} \mathbb{A} \hspace{0.1cm}\text{ring of }$ adèles of F and $\mathcal{O} = \prod_{c \in |C|} \hat{\mathcal{O}}_c \subset \mathbb{A}$

• Let
$$
\varpi_D = (\varpi_c^{mult_c(D)})_{c \in |C|} \in \mathbb{A}^{\times}
$$

• Let $\chi \in \mathbf{A}(k)$ and \mathcal{H}_{χ} be the set of

$$
(g,\gamma)\in\mathit{G}(\mathbb{A})/\mathit{G}(\mathcal{O})\times\mathfrak{g}(\mathit{F})\text{ s.t. }
$$

1. deg(det(g)) = 0
\n2.
$$
\chi_{\gamma} = \chi
$$

\n3. $g^{-1}\gamma g \in \varpi_D^{-1} \mathfrak{g}(\mathcal{O})$

• The group $G(F)$ acts on \mathcal{H}_χ by $\delta\cdot(g,\gamma)=(\delta g,\delta\gamma\delta^{-1})$

Lemma

The Hitchin fibre $f^{-1}(\chi)(k)$ is the quotient groupoid $[G(F)\backslash \mathcal{H}_\chi].$

Counting points of elliptic Hitchin fibers

Let $A^{\text{ell}} \subset A^{\text{rss}} \subset A$ be the open subsets defined by

• $A^{ell} = \{ \chi \in A^{ell} \mid \chi \text{ is irreducible in } F[X] \}$

•
$$
\mathbf{A}^{rss} = \{ \chi \in \mathbf{A}^{ell} \mid \chi \text{ is square-free in } F[X] \}
$$

Lemma (Ngô)

Let $\chi \in \mathbf{A}^{rss}$ and $\gamma \in \mathfrak{g}(F)$ s.t. $\chi_{\gamma} = \chi$. Let $(\gamma_c)_c = \varpi_D \gamma \in \mathfrak{g}(\mathbb{A})$. We have

$$
f^{-1}(\chi)(k) \simeq \left[G(F) \backslash \mathcal{H}_{\chi} \right] \simeq \left[\left. T(F) \right\backslash \prod_{c \in |C|} \mathfrak{X}_{\gamma_c}(k) \right]
$$

where $\mathcal T$ is the centralizer of γ in G and $\mathfrak X_{\gamma_c}$ is an affine Springer fiber. Moreover if $k = \mathbb{F}_q$, we have

$$
|f^{-1}(\chi)(\mathbb{F}_q)| = \text{vol}(\mathcal{T}(F)\backslash \mathcal{T}(\mathbb{A})^0) \prod_c \mathcal{O}_{\gamma_c}
$$

where vol $(T(F)\backslash T(\mathbb{A})^0)<\infty$ iff $\chi\in \mathbf{A}^{\text{ell}}(\mathbb{F}_q)$.

A slight variant of the Hitchin fibration

Let $\infty \in C$ a closed point, $\infty \notin \text{supp}(D)$. Let $A^{\infty} \subset A^{rss}$ be the open subset of $\chi \in A$ such that χ_{∞} has only simple roots.

Let A be the étale Galois cover of A^{∞} of group \mathfrak{S}_n given by

$$
\mathcal{A} = \{(\chi, \tau) \in \mathbf{A}^{\infty} \times k^n | \chi_{\infty} = \prod_{i=1}^n (X - \tau_i) \}
$$

Let $(\mathcal{E}, \theta, \chi_{\theta}, \tau) \in \mathbf{M} \times_{\mathbf{A}} \mathcal{A}$. Then θ_{∞} is a regular semi-simple endomorphism of \mathcal{E}_{∞} . Let

$$
\mathcal{M} \to M \times_A \mathcal{A}
$$

be the \mathbb{G}_m -torsor we obtain by choosing an eigenvector e_1 in the line Ker($\theta_{\infty} - \tau_1$ Id $_{\mathcal{E}_{\infty}}$). Remark The additional datum e_1 "kills" the automorphisms coming from the center of G.

By base change, we have a Hitchin fibration still denoted f

$$
\mathcal{M} \to M \times_A \mathcal{A} \to \mathcal{A}
$$

So M classifies $(\mathcal{E}, \theta, \tau, e_1)$ s.t.

- (\mathcal{E}, θ) is Higgs bundle s.t. θ_{∞} is regular semi-simple
- $\tau = (\tau_1, \ldots, \tau_n)$ is the ordered collection of eigenvalues of θ_{∞}
- $e_1 \in \mathcal{E}_{\infty}$ is an eigenvector of $(\theta_{\infty}, \tau_1)$.

By deformation theory, we have

Theorem (Biswas-Ramanan)

The algebraic stack M is smooth over k .

The spectral curve of Hitchin-Beauville-Narasimhan-Ramanan

Let $\Sigma_D = \mathit{Spec}\big(\bigoplus_{i=0}^\infty \mathcal{O}_\mathcal{C}(-iD)X^i\big) \to \mathcal{C}$ the whole space of the divisor D. Let $a = (\chi, \tau) \in \mathcal{A}$. The spectral curve Y_a is the closed curve in Σ_D defined by the equation

$$
\chi(X) = X^n - a_1 X^{n-1} + \ldots + (-1)^n a_n = 0.
$$

The canonical projection $\pi_a: Y_a \to C$ is a finite cover of degree *n*, which is \acute{e} tale over ∞ . We have a natural identification

$$
\pi_a^{-1}(\infty)=\{\infty_1,\ldots,\infty_n\}\cong\{\tau_1,\ldots,\tau_n\}.
$$

Properties of the spectral curve Y_a

Recall $a = (\chi, \tau) \in \mathcal{A}$

- Y_a is reduced (since $\chi \in \mathbf{A}^{rss}$)
- Y_a is connected
- Y_a is not always irreducible: Y_a is irreducible \iff a $\in \mathcal{A}^{\text{ell}}$ (there are as many irreducible components of Y_a as irreducible factors of $\chi \in F[X]$)
- Its arithmetic genus defined by

$$
q_{Y_a} = \text{dim}(H^1(Y_a, \mathcal{O}_{Y_a})) = \text{dim}(H^1(\mathcal{C}, \pi_{a,*}\mathcal{O}_{Y_a}))
$$

does not depend on a. In fact,

$$
\pi_{a,*}\mathcal{O}_{Y_a}=\mathcal{O}_C\oplus\mathcal{O}_C(-D)\oplus\ldots\oplus\mathcal{O}((-n+1)D)
$$

and $q_{Y_a} = \frac{n(n-1)}{2}$ $\frac{p-1}{2}$ deg $(D) + n(g-1) + 1$.

Hitchin-Beauville-Narasimhan-Ramanan correspondence

Theorem (H-BNR)

Let a \in A. The Hitchin fiber $\mathcal{M}_\mathsf{a} = f^{-1}(\mathsf{a})$ is isomorphic to the stack of torsion-free coherent ${\mathcal O}_{Y_a}$ -modules ${\mathcal F}$ of degree 0 and rank 1 at generic points of Y_a , equipped with a trivialization of their stalk at ∞_1 .

Construction: the multiplication by X gives a section

$$
\mathcal{O}_{Y_a} \to \pi_a^* \mathcal{O}_C(D).
$$

For such a ${\mathcal F}$, we get a morphism ${\mathcal F} \to {\mathcal F} \otimes_{{\mathcal O}_{Y_{\mathbf a}}} \pi_{\mathbf a}^* {\mathcal O}_{\mathcal C}(D)$ and

$$
\theta: \pi_{a,*}{\mathcal F} \to \pi_{a,*}({\mathcal F} \otimes_{{\mathcal O}_{Y_a}} \pi_a^*{\mathcal O}_C(D)) = \pi_{a,*}({\mathcal F})(D)
$$

We associate to ${\cal F}$ the Higgs bundle $(\pi_{\mathsf{a}, *} {\cal F} \otimes_{{\cal O}_{\cal C}} {\cal O}_{\cal C}(\frac{n-1}{2}D), \theta).$

Let A^{sm} the open set of a such that Y_a is smooth. One has $\mathcal{A}^{sm} \neq \emptyset$.

Corollary

For $a \in A^{sm}$, the Hitchin fiber \mathcal{M}_a is the Jacobian of Y_a . In particular, it is an abelian variety.

Let $a \in \mathcal{A}$.

Let $\operatorname{Pic}^0(Y_{\mathsf{a}})$ the smooth commutative group scheme of line bundles on Y_a of degree 0, equipped with a trivialization of their stalk at ∞_1 .

By H-BNR correspondence, $\operatorname{Pic}^0(Y_a)$ acts on \mathcal{M}_a .

Let $\mathcal{M}_{a}^{\mathsf{reg}}\subset\mathcal{M}_{a}$ be the open sub-stack $(\mathcal{E},\theta,\tau,{\sf e}_{1})\in\mathcal{M}_{a}$ such that θ_c is regular for any $c \in \mathcal{C}$.

Lemma

 $\mathcal{M}^{\mathsf{reg}}_a$ is a $\mathrm{Pic}^0(Y_a)$ -torsor.

Dimension of Hitchin fibers $M₂$

As a consequence of the work of Altmann-Iarrobino-Kleiman on compactified Jacobian, Ngô gets the following theorem

Theorem

- $\mathcal{M}_a^{\text{reg}}$ is dense in \mathcal{M}_a .
- dim $(\mathcal{M}_a) = \text{dim}(\mathcal{M}_a^{\text{reg}}) = \text{dim}(\text{Pic}^0(Y_a)) = q_{Y_a}$ (=arithmétic genus of Y_a) does not depend on a.
- Irr(M_a) is a torsor under the abelian group $\pi_0(\mathrm{Pic}^0(\mathsf{Y}_a)) \simeq \{(\mathsf{n}_i) \in \mathbb{Z}^\mathsf{Irr(\mathsf{Y}_a)} \mid \sum_i \mathsf{n}_i = 0\}$

Corollary

- dim $(\mathcal{M}) = n^2 \deg(D) + 1$.
- \mathcal{M}_a is irreducible if and only if $a \in \mathcal{A}^{\text{ell}}$.

Some examples

In the first 3 pictures, Y_a is irreducible and $\mathcal{M}_a \simeq Y_a$.

Support theorem on the elliptic locus

As a consequence of results of Altmann-Kleiman, the elliptic Hitchin morphism

$$
f^{\text{ell}}: \mathcal{M}^{\text{ell}} = \mathcal{M} \times_{\mathcal{A}} \mathcal{A}^{\text{ell}} \rightarrow \mathcal{A}^{\text{ell}}
$$

is proper and \mathcal{M}^{ell} is a smooth scheme over k. By Deligne theorem, the complex of ℓ -adic sheaves $Rf^{\text{ell}}_{*}\bar{\mathbb{Q}}_{\ell}$ is pure. By Beilinson-Bernstein-Deligne-Gabber decomposition theorem, the direct sum of its perverse cohomology sheaves is semi-simple:

$$
{}^p\mathcal{H}^\bullet(Rf_*^{\text{ell}}\bar{\mathbb{Q}}_\ell)=\bigoplus_i\,{}^p\mathcal{H}^i(Rf_*^{\text{ell}}\bar{\mathbb{Q}}_\ell)
$$

Theorem (Ngô's support theorem)

The support of any irreducible constituent of $P\mathcal{H}^{\bullet}(Rf_{G,*}^{ell}\bar{\mathbb{Q}}_{\ell})$ is \mathcal{A}^{ell} . Remarks

- The theorem is in fact only proved on a big subset of A .
- Orbital integrals are "limits" of the simplest orbital integrals.

For other reductive groups G ?

- The support theorem is not true as stated.
- Let's consider the example $G = SL(2)$. The Hitchin space \mathcal{M}_G classifies $(\mathcal{E}, \theta, \tau, e_1)$ as before with
	- $\mathcal E$ is a vector bundle of degree 2 and trivial determinant $det(\mathcal{E}) = \mathcal{O}_C$.
	- $\theta : \mathcal{E} \to \mathcal{E}(D)$ is a traceless twisted endomorphism.
- The Hitchin base \mathcal{A}_G classifies pairs $\pmb{a} = (X^2 a_2, \tau)$ where $a_2 \in H^0(C, \mathcal{O}(2D))$ s.t. $a_2(\infty) = \tau^2 \neq 0$.
- We have a Hitchin morphism $f : \mathcal{M}_G \to \mathcal{A}_G$ defined by $f(\mathcal{E}, \theta, \tau, e_1) = (\det(\theta), \tau).$
- A Hitchin fiber M_a is isomorphic to the stack of rank 1, torsionfree ${\mathcal O}_{Y_a}$ -modules ${\mathcal F}$ which satisfy det $(\pi_{a,*} {\mathcal F}(\frac{D}{2}$ $(\frac{D}{2})$) = \mathcal{O}_C
- The group P_a acts on \mathcal{M}_a .

$$
P_a := \text{Ker}(\text{Norm}: \text{Pic}^0(Y_a) \to \text{Pic}^0(C)).
$$

The example of SL(2)

- Let $a \in \mathcal{A}^{\text{ell}}$ and $\rho_a : X_a \to C$ obtained from the normalization $X_2 \to Y_2$ and $\pi_2: Y_2 \to C$.
- Either the group P_a is connected or $\pi_0(P_a) = \mathbb{Z}/2\mathbb{Z}$.
- P_a is not connected iff $\rho_a : X_a \to C$ is étale. Let $\mathcal{L} \in Pic^0(\mathcal{C})[2]$ attached to X_a . Moreover there exists

$$
b\in H^0(C,\mathcal{L}(D))
$$

s.t. $b^{\otimes 2} = a_2$.

• The groups P_a come in a family P/A^{ell} with a natural morphism

$$
\mathbb{Z}/2\mathbb{Z} \to \pi_0(P/\mathcal{A}^{\rm ell}).
$$

• The group P acts on ${}^{\rho}\!{\cal H}^\bullet(Rf_{G,*}^{\rm ell}\bar{\mathbb{Q}}_\ell)$ through $\pi_0(P/{\cal A}^{\rm ell})$

$$
{}^p\!\mathcal{H}^\bullet(\mathit{Rf}_{G,*}^{\mathrm{ell}}\bar{\mathbb{Q}}_\ell) = {}^p\!\mathcal{H}^\bullet(\mathit{Rf}_{G,*}^{\mathrm{ell}}\bar{\mathbb{Q}}_\ell)_+ \oplus {}^p\!\mathcal{H}^\bullet(\mathit{Rf}_{G,*}^{\mathrm{ell}}\bar{\mathbb{Q}}_\ell)_-
$$

Support theorem for SL(2)

• For any non-trivial $\mathcal{L} \in Pic^0(C)[2]$,

$$
\mathcal{A}_{\mathcal{L}}=\{b\in H^0(\mathcal{C},\mathcal{L}(D))\mid b(\infty)\neq 0\}.
$$

- The map $b \mapsto (b^{\otimes 2}, b(\infty))$ defines a closed immersion $A_{\mathcal{L}} \hookrightarrow \mathcal{A}_{\mathcal{G}}^{\text{ell}}.$
- The A_C are disjoint.

Theorem (Ngô's support theorem)

- 1. The support of any irreducible constituent of ${}^{\rho}\mathcal{H}^{\bullet}(\mathit{RF}^{\textrm{ell}}_{G,*}\bar{\mathbb{Q}}_{\ell})_{+}$ is $\mathcal{A}_G^{\text{ell}}$.
- $2.$ The supports of irreducible constituents of ${}^{\rho}\mathcal{H}^{\bullet}(Rf_{G,*}^{\mathrm{ell}}\bar{\mathbb{Q}}_{\ell})_{-}$ are the Ar .

Cohomological fundamental lemma for SL(2)

• Any non-trivial $\mathcal{L} \in Pic^0(\mathcal{C})[2]$ defines an étale cover $X_\mathcal{L} \to \mathcal{C}$ and an endoscopic group scheme on C

$$
H_{\mathcal{L}}=(X_{\mathcal{L}}\times \mathbb{G}_m)/\{\pm 1\}
$$

• For $H=H_{\mathcal{L}}$, we have a Hitchin morphism $f^H:\mathcal{M}_H\to\mathcal{A}_H$ with $A_H = A_C$.

Theorem (Ngô) Let $\iota_H : A_H \to A_G$. We have up to a shift and a twist

$$
\iota_H^*{}^p\mathcal{H}^\bullet(Rf_{G,*}^{\mathrm{ell}}\bar{\mathbb{Q}}_\ell)_-\simeq {}^p\mathcal{H}^\bullet(Rf_{H,*}\bar{\mathbb{Q}}_\ell)
$$

By the Grothendieck-Lefschetz trace formula, this gives a global version of the fundamental lemma for $G = SL(2)$.

$GL(n)$ case : outside the elliptic locus

- The properness of f^{ell} is crucial in Ngô's proof.
- Outside A^{ell} , the Hitchin fibration is neither of finite type nor separeted.
- To get Arthur's weighted fundamental lemma, we have to look outside \mathcal{A}^{ell} .
- For each $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$, let's say that $m = (\mathcal{E}, \theta, \tau, e_1) \in \mathcal{M}$ is ξ -stable iff for any θ -invariant sub-bundle

$$
0\subsetneq\mathcal{F}\subsetneq\mathcal{E}
$$

one has

$$
\deg(\mathcal{F})+\sum_i \xi_i<0
$$

where the sum is over i s.t. τ_i is an eigenvalue $of \theta_{|\mathcal{F}_\infty}.$

Remarks there is only a finite number of θ -invariant $\mathcal F$ and none if (\mathcal{E}, θ) is elliptic.

Properness of \mathcal{M}^{ξ}

Let \mathcal{M}^{ξ} be the ξ -stable sub-stack of $\mathcal M$ for a generic ξ . Theorem (Laumon-C.)

- 1. \mathcal{M}^{ξ} is an smooth open sub-stack of $\mathcal M$ which contains \mathcal{M}^{ell} .
- 2. The ξ-stable Hitchin fibration is proper.

$$
f^\xi:\mathcal{M}^\xi\to\mathcal{A}
$$

- 3. For a $\in \mathcal{A}(\mathbb{F}_q)$, $|\mathcal{M}_\mathsf{a}^\xi(\mathbb{F}_q)|$ does not depend on ξ and is a global Arthur's weighted orbital integral.
- 4. Support theorem. The support of any irreducible constituent of ${}^p\!H^\bullet(Rf_{G,*}^\xi\bar{\mathbb{Q}}_\ell)$ is $\mathcal{A}.$

Here ξ generic means $\sum_{i\in I}\xi_i\notin\mathbb{Z}$ for any $\emptyset\neq I\subsetneq\{1,\ldots,n\}$

A spectral curve with 2 components

Let's go back to the example: $C = \mathbb{P}^1_k \supset \text{Spec}(k[y]) \ni \infty$, $D = 2[0], n = 2.$ Let $a = (X^2 - (y^2 - 1)^2, (1, -1)) \in \mathcal{A}$. In this case, Y_a has 2 irreducible components and looks like

An non-elliptic fiber

 M_a is the quotient of the product of 2 Affine Springer fibers by the diagonal action of \mathbb{G}_m and the antidiagonal action of $\mathbb Z$

An non-elliptic fiber

The action of \mathbb{G}_m stabilizes each square with 1-dim. orbits, fixed points and in black the quotient by \mathbb{G}_m

An non-elliptic fiber

Up to some $B\mathbb{G}_m$, \mathcal{M}_a looks like an infinite chain of non-separeted P^1 with double 0 and double ∞ .

Stable part of \mathcal{M}_a

Semi-stable part of \mathcal{M}_a

ξ -stable part of \mathcal{M}_a , ξ generic

We get ...

