Current Research

- RJ: generalizing the results outlined in this poster to \mathbb{Z}_2 -graded Lie algebras; and an inductive approach to Panyushev's antichain dualization algorithm that generalizes to D_n .
- Tim: expanding on results regarding specific antichains A which correspond to infinite-

The E_8 poset

The poset of roots of E_8 admissible by condition 1 of the Proposition:

dimesional associative Koszul algebras whose global dimension is $\#\Phi(A)$.

Results for the other simple algebras

- For the other classical Lie algebras, similar arguments to those used for A_n allow us to describe all abelian J-antichains.
- Of the classical Lie algebras, only C_n admits a nice, simple formula for the total number $(2^{n-\#J}).$
- In both classical and exceptional cases, we use this combinatorial approach for the case when $J = \emptyset$ (i.e. counting abelian ideals for the Borel subalgebra $\mathfrak{p}_{\emptyset} = \mathfrak{b} = \mathfrak{h} \oplus_{\alpha \in R^+} \mathfrak{g}_{\alpha}$) to recover Peterson's result of having 2^n abelian ideals for b. This is obvious for A_n and C_n from the closed formulas, since $\#J = 0$.
- For abelian antichains in the case of the exceptional Lie algebras, one can simply draw the poset of roots, eliminating those roots that don't meet condition 1 of the Proposition, and count the antichains. The E_8 poset is to the right.

For A_n , $R^+ = \{\alpha_{i,j} : 1 \le i \le j \le n\}$ and $\theta = \alpha_{1,n}$. Let $A \subset R^+$, and let $J \subset [n]$. To have $A \in \mathbf{A}_{s,J}$, we need to see how the elements of A behave with respect to the definition of a J-antichain, as well as conditions (1) and (2) of the Proposition.

Some notation:

\n- $$
A_{s,J}
$$
 is the set of abelian J-antichains with s elements $(A_{0,J} = \{\emptyset\})$.
\n- For $i, j \in [n], i \leq j, \alpha_{i,j} = \alpha_i + \cdots + \alpha_j$ $(\alpha_{i,i} = \alpha_i)$.
\n- For calculational purposes, $\binom{n}{k} = 0$ when $k < 0$ or $k > n$.
\n

• The set of *J*-ideals in R^+ is in one-to-one correspondence with the set of ad-nilpotent ideals of the parabolic subalgebra

$$
A = \left\{ \alpha_{i_k, j_k} : 1 \le k \le s; \ i_k, j_k \in [n] \backslash J; \ i_1 < i_2 < \cdots < i_s \le j_1 < j_2 < \cdots < j_s \right\}.
$$

Given this description, $A_{s,J}$ breaks into 2 cases: $i_s < j_1$, and $i_s = j_1$. These correspond to subsets of $[n] \setminus J$ of size 2s in the first case (2 endpoints for each of the s elements of A), and $2s - 1$ in the second (one less than in case 1 since $i_s = j_1$). Thus

$$
\#\mathbf{A}_{s,J} = \begin{pmatrix} n - \#J \\ 2s - 1 \end{pmatrix} + \begin{pmatrix} n - \#J \\ 2s \end{pmatrix},
$$

and the number of abelian J-antichains is

$$
\sum_{s} \# \mathbf{A}_{s,J} = \sum_{s} \left({n - \# J \choose 2s - 1} + {n - \# J \choose 2s} \right) = \sum_{p} {n - \# J \choose p} = 2^{n - \# J}.
$$

Notation, Definitions and Preliminary Results

• For a finite dimensional simple Lie algebra g of rank n with fixed Cartan subalgebra h , we use the standard partial ordering \leq on the set of roots $R: \alpha \leq \beta \iff \beta - \alpha \in Q^+$.

• Define
$$
d_i : Q \longrightarrow \mathbb{Z}
$$
 by $\eta = \sum_{i=1}^n d_i(\eta) \alpha_i$, and let $J \subset [n]$.

- Set $R(J) = \{ \alpha \in R : d_i(\alpha) = 0 \text{ if } i \notin J \}, R^+(J) = R(J) \cap R^+$.
- A subset Φ of R^+ is a J-ideal if $\Phi \cap R^+(J) = \emptyset$ and

 $\alpha \in \Phi, \beta \in R^+ \cup R(J), \beta + \alpha \in R \Rightarrow \beta + \alpha \in \Phi.$

Counting for A_n

$$
\mathfrak{p}_J = \mathfrak{h} \oplus_{\alpha \in R^+} \mathfrak{g}_{\alpha} \oplus_{\alpha \in R^+(J)} \mathfrak{g}_{-\alpha},
$$

where $\Phi \mapsto \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$.

- $A \subset R^+$ is a J-antichain if $A \cap R^+(J) = \emptyset$ and, for all $\alpha, \beta \in A$ and $j \in J$, we have $\alpha \nleq \beta, \beta \nleq \alpha$ and $\alpha - \alpha_j \notin R$.
- There is a one-to-one correspondence between J-antichains of R^+ and J-ideals of R^+ :

$$
A \mapsto \Phi(A) = \bigcup_{\alpha \in A} \{ \beta \in R^+ : \beta \ge \alpha \} .
$$

- So by enumerating all J-antichains for a fixed J, we enumerate all ad-nilpotent ideals for a fixed \mathfrak{p}_J .
- An ideal Φ is of **nilpotence** k if for any $\beta_1, \dots, \beta_{k+1} \in \Phi$ (not necessarily distinct), \mathcal{k} \sum +1 $s=1$ $\beta_s \notin R$. Φ is **abelian** if it is of nilpotence 1.
- **Theorem 1** Let A be an antichain in R^+ , θ the highest root of \mathfrak{g} . Then $\Phi(A)$ is a k-nilpotent *ideal if and only if for any* $\beta_1, \cdots, \beta_{k+1} \in A$ (not necessarily distinct), $k₂$ \sum $+1$ $s=1$ $\beta_s \nleq \theta.$
- **Proposition ¹** *Let* J ⊂ [n]*. A* J*-antichain* A *is abelian if and only if the following hold: 1. for all* $\alpha \in A$ *, there exists* $i \in J$ *such that* $2d_i(\alpha) > d_i(\theta)$ *.* $2.$ *for all* $\alpha, \beta \in A$ *with* $\alpha \neq \beta$ *, there exists* $i \in J$ *such that* $d_i(\alpha) + d_i(\beta) > d_i(\theta)$ *; in* $particular, d_i(\alpha) \neq 0, d_i(\beta) \neq 0.$
- J-antichain: Consider two roots $\alpha_{i,j}, \alpha_{k,l} \in A, \alpha_{i,j} \neq \alpha_{k,l}$. If $i = k$, then $\alpha_{i,\min(j,l)} \leq \alpha_{i,\max(j,l)}$, a contradiction. So assume without loss of generality that $i < k$. Then $j < l$, since otherwise $\alpha_{k,l} \leq \alpha_{i,j}$. Now let $\alpha_{k,l} \in A, j \in J$. We need $\alpha_{k,l} - \alpha_{j,j} \notin R$. If j is not between k and l, then $\alpha_{k,l} - \alpha_{j,j}$ is a Z-linear combination of simple roots with both positive and negative coefficients, which is not a root. If $k < j < l$, then $\alpha_{k,l}-\alpha_{j,j}=\alpha_{k,j-1}+\alpha_{j+1,l},$ which is not a root. So the only time $\alpha_{k,l}-\alpha_{j,j}$ is a root is if $j = k$ or $j = l$. Thus, if $\alpha_{k,l} \in A$, then $k, l \notin J$.
- Condition 1: Since $2d_i(\alpha_{i,j}) > d_i(\theta)$ for any $\alpha_{i,j} \in R^+$, there are no roots which are excluded a priori from A by this condition.
- Condition 2: From above, we already know that if $\alpha_{i,j}, \alpha_{k,l} \in A, \alpha_{i,j} \neq \alpha_{k,l}$, then $i < j$ and $k < l$. If $j < k$, then $d_i(\alpha_{i,j}) + d_i(\alpha_{k,l}) \leq d_i(\theta)$ for all i, contradicting condition 2. So $i < k \leq j < l$.

From this information, we can now construct a general abelian *J*-antichain of size s:

UC Riverside Department of Mathematics A Chari's Angels Production Contact Information: rjdolbin@math.ucr.edu, tbr4@math.ucr.edu

Ideals in parabolic subalgebras of simple Lie algebras

RJ Dolbin and Tim Ridenour Advisor: Dr. Vyjayanthi Chari