Ideals in parabolic subalgebras of simple Lie algebras

RJ Dolbin and Tim Ridenour

Advisor: Dr. Vyjayanthi Chari

Notation, Definitions and Preliminary Results

- For a finite dimensional simple Lie algebra \mathfrak{g} of rank n with fixed Cartan subalgebra \mathfrak{h} , we use the standard partial ordering \leq on the set of roots $R: \alpha \leq \beta \iff \beta - \alpha \in Q^+$.
- Define $d_i: Q \longrightarrow \mathbb{Z}$ by $\eta = \sum_{i=1}^n d_i(\eta) \alpha_i$, and let $J \subset [n]$.
- Set $R(J) = \{ \alpha \in R : d_i(\alpha) = 0 \text{ if } i \notin J \}, R^+(J) = R(J) \cap R^+.$
- A subset Φ of R^+ is a *J*-ideal if $\Phi \cap R^+(J) = \emptyset$ and

 $\alpha \in \Phi, \beta \in R^+ \cup R(J), \beta + \alpha \in R \Rightarrow \beta + \alpha \in \Phi.$

Counting for A_n

Some notation:

For A_n , $R^+ = \{\alpha_{i,j} : 1 \le i \le j \le n\}$ and $\theta = \alpha_{1,n}$. Let $A \subset R^+$, and let $J \subset [n]$. To have $A \in \mathbf{A}_{s,J}$, we need to see how the elements of A behave with respect to the definition of a *J*-antichain, as well as conditions (1) and (2) of the Proposition.

• The set of J-ideals in R^+ is in one-to-one correspondence with the set of ad-nilpotent ideals of the parabolic subalgebra

$$\mathfrak{p}_J = \mathfrak{h} \oplus_{\alpha \in R^+} \mathfrak{g}_\alpha \oplus_{\alpha \in R^+(J)} \mathfrak{g}_{-\alpha},$$

where $\Phi \mapsto \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$.

- $A \subset R^+$ is a J-antichain if $A \cap R^+(J) = \emptyset$ and, for all $\alpha, \beta \in A$ and $j \in J$, we have $\alpha \leq \beta, \beta \leq \alpha \text{ and } \alpha - \alpha_i \notin R.$
- There is a one-to-one correspondence between J-antichains of R^+ and J-ideals of R^+ :

$$A \mapsto \Phi(A) = \bigcup_{\alpha \in A} \left\{ \beta \in R^+ : \beta \ge \alpha \right\}.$$

- So by enumerating all *J*-antichains for a fixed *J*, we enumerate all ad-nilpotent ideals for a fixed \mathfrak{p}_J .
- An ideal Φ is of **nilpotence** k if for any $\beta_1, \dots, \beta_{k+1} \in \Phi$ (not necessarily distinct), $\sum_{s=1}^{k+1} \beta_s \notin R. \Phi \text{ is abelian if it is of nilpotence 1.}$
- **Theorem 1** Let A be an antichain in \mathbb{R}^+ , θ the highest root of \mathfrak{g} . Then $\Phi(A)$ is a k-nilpotent ideal if and only if for any $\beta_1, \dots, \beta_{k+1} \in A$ (not necessarily distinct), $\sum_{s=1}^{k+1} \beta_s \nleq \theta$.
- **Proposition 1** Let $J \subset [n]$. A J-antichain A is abelian if and only if the following hold: 1. for all $\alpha \in A$, there exists $i \in J$ such that $2d_i(\alpha) > d_i(\theta)$.
- 2. for all $\alpha, \beta \in A$ with $\alpha \neq \beta$, there exists $i \in J$ such that $d_i(\alpha) + d_i(\beta) > d_i(\theta)$; in particular, $d_i(\alpha) \neq 0, d_i(\beta) \neq 0$.

- J-antichain: Consider two roots $\alpha_{i,j}, \alpha_{k,l} \in A, \alpha_{i,j} \neq \alpha_{k,l}$. If i = k, then $\alpha_{i,\min(j,l)} \leq \alpha_{i,\max(j,l)}$, a contradiction. So assume without loss of generality that i < k. Then j < l, since otherwise $\alpha_{k,l} \le \alpha_{i,j}$. Now let $\alpha_{k,l} \in A, j \in J$. We need $\alpha_{k,l} - \alpha_{j,j} \notin R$. If j is not between k and l, then $\alpha_{k,l} - \alpha_{j,j}$ is a Z-linear combination of simple roots with both positive and negative coefficients, which is not a root. If k < j < l, then $\alpha_{k,l} - \alpha_{j,j} = \alpha_{k,j-1} + \alpha_{j+1,l}$, which is not a root. So the only time $\alpha_{k,l} - \alpha_{j,j}$ is a root is if j = k or j = l. Thus, if $\alpha_{k,l} \in A$, then $k, l \notin J$.
- Condition 1: Since $2d_i(\alpha_{i,j}) > d_i(\theta)$ for any $\alpha_{i,j} \in R^+$, there are no roots which are excluded a priori from A by this condition.
- Condition 2: From above, we already know that if $\alpha_{i,j}, \alpha_{k,l} \in A, \alpha_{i,j} \neq \alpha_{k,l}$, then i < jand k < l. If j < k, then $d_i(\alpha_{i,j}) + d_i(\alpha_{k,l}) \le d_i(\theta)$ for all *i*, contradicting condition 2. So $i < k \leq j < l.$

From this information, we can now construct a general abelian *J*-antichain of size s:

$$A = \left\{ \alpha_{i_k, j_k} : 1 \le k \le s; \ i_k, j_k \in [n] \setminus J; \ i_1 < i_2 < \dots < i_s \le j_1 < j_2 < \dots < j_s \right\}$$

Given this description, $A_{s,J}$ breaks into 2 cases: $i_s < j_1$, and $i_s = j_1$. These correspond to subsets of $[n] \setminus J$ of size 2s in the first case (2 endpoints for each of the s elements of A), and 2s - 1 in the second (one less than in case 1 since $i_s = j_1$). Thus

$$#\mathbf{A}_{s,J} = \binom{n-\#J}{2s-1} + \binom{n-\#J}{2s},$$

and the number of abelian *J*-antichains is

$$\sum_{s} \#\mathbf{A}_{s,J} = \sum_{s} \left(\binom{n-\#J}{2s-1} + \binom{n-\#J}{2s} \right) = \sum_{p} \binom{n-\#J}{p} = 2^{n-\#J}.$$

Results for the other simple algebras

- For the other classical Lie algebras, similar arguments to those used for A_n allow us to describe all abelian J-antichains.
- Of the classical Lie algebras, only C_n admits a nice, simple formula for the total number $(2^{n-\#J}).$
- In both classical and exceptional cases, we use this combinatorial approach for the case when $J = \emptyset$ (i.e. counting abelian ideals for the Borel subalgebra $\mathfrak{p}_{\emptyset} = \mathfrak{b} = \mathfrak{h} \oplus_{\alpha \in \mathbb{R}^+} \mathfrak{g}_{\alpha}$) to recover Peterson's result of having 2^n abelian ideals for b. This is obvious for A_n and C_n from the closed formulas, since #J = 0.
- For abelian antichains in the case of the exceptional Lie algebras, one can simply draw the poset of roots, eliminating those roots that don't meet condition 1 of the Proposition, and count the antichains. The E_8 poset is to the right.

Current Research

- RJ: generalizing the results outlined in this poster to \mathbb{Z}_2 -graded Lie algebras; and an inductive approach to Panyushev's antichain dualization algorithm that generalizes to D_n .
- Tim: expanding on results regarding specific antichains A which correspond to infinite-

The E_8 poset

The poset of roots of E_8 admissible by condition 1 of the Proposition:

dimensional associative Koszul algebras whose global dimension is $\#\Phi(A)$.

UC Riverside Department of Mathematics A Chari's Angels Production Contact Information: rjdolbin@math.ucr.edu, tbr4@math.ucr.edu