Dpto. Álgebra, Geometría y Topología. Facultad de Ciencias. Universidad de Málaga. 29071 Málaga. jsanchez@agt.cie.uma.es

<u> A DESCRIPTION DES LA DESCRIPTION DE L</u>

Graded quotients

L **=** graded subalgebra **of a graded Lie algebra** Q

<u>on ta tanan yang menyanyi seba</u>

Q **is a** graded algebra of quotients **of** L

 $q_{\tau} \in Q$, $L(q_{\tau}) =$ linear span in Q of q_{τ} and ad $x_1 \dots$ ad $x_n q_{\tau}$, with $n \in \mathbb{N}, x_1, \ldots, x_n \in L$ $\forall p_{\sigma}, q_{\tau} \in Q, p_{\sigma} \neq 0, \exists x_{\alpha} \in L : [x_{\alpha}, p_{\sigma}] \neq 0, [x_{\alpha}, L(q_{\tau})] \subseteq L$

Q **is a** graded weak algebra of quotients **of** L

$\forall 0 \neq p_{\sigma} \in Q_{\sigma}, \exists x_{\alpha} \in L : 0 \neq [x_{\alpha}, p_{\sigma}] \in L$

BEING A GRADED ALGEBRA OF QUOTIENTS

BEING A GRADED WEAK ALGEBRA OF QUOTIENTS **See [5, Remark 2.3]**

 As it happened in the non-graded case some PROPERTIES **of a graded Lie algebra are** INHERITED **by each of its algebras of quotients (See [6, Lemma 2.11])**

 $|\text{Der}_{qr}(I,L)_{\sigma}$ **= the set of all graded derivations of degree** σ

RELATIONSHIP BETWEEN GRADED (WEAK) ALGEBRAS OF QUOTIENTS AND (WEAK) ALGEBRAS OF QUOTIENTS

Proposition. Let $L \subseteq Q$ be graded Lie algebras. Consider the following $conditions:$

(i) Q is an algebra of quotients of L .

(ii) Q is a graded algebra of quotients of L .

Then (i) implies (ii) . Moreover, if L is graded semiprime then (ii) $implies (i).$

Lemma. Let $L \subseteq Q$ be graded Lie algebras. If Q is a weak algebra of quotients of L then Q is also a graded weak algebra of quotients of L.

Jordan pairs of quotients and 3-graded Lie quotients 2

TKK(H(R,*)), **where H(. , *) is the set consisting of all symmetric elements.**

MAXIMAL GRADED QUOTIENTS

3 The maximal Lie algebra of quotients of **20 ASSANTIAL INCAL**

The maximal Lie algebra of quotients of A^-/Z 4

Suppose L **is G-graded and take** I **a graded ideal of L**

A derivation $\delta: I \to L$ has *degree* $\sigma \in G$ if it satisfies $\delta(I_{\tau}) \subseteq L_{\tau\sigma}$ $(\forall \tau \in G)$. In this case, δ is called a *graded derivation of degree* σ .

is also a Φ**-module.**

 $\mathrm{Der}(A) \subseteq \mathrm{Der}_{m}(A) \subseteq \mathrm{Der}(Q_s(A))$ **If A is prime, then:**

Theorem. Let A be a prime algebra such that either $deg(A) \neq 3$ or $char(A) \neq 3$. Then, $Der(A) \cong Q_m(A^-/Z)$. Moreover, the map $\varphi : Der_m(A) \to Q_m(A^-/Z)$ defined by $\delta_I \mapsto \delta_{\overline{I}},$ where $\overline{\delta} : \overline{I} \to A^-/Z$ maps \overline{y} into $\delta(y)$, is an isomorphism of Lie algebras.

For L graded semiprime, the direct limit

 $Q_{qr-m}(L) := \lim_{r \to \infty} \operatorname{Der}_{qr}(I, L)$ $I \in \mathcal{I}_{ar-e}(L)$

is a graded algebra of quotients of L containing L as a graded subalgebra via the following graded Lie monomorphism:

 Let L be a SEMIPRIME **Lie algebra. We say that** L **is MAX-CLOSED** if it satisfies $Q_m(Q_m(L))=Q_m(L)$

 Moreover, it is maximal among the graded algebras of quotients of L and is called the MAXIMAL GRADED ALGEBRA OF QUOTIENTS OFL. **This notion extends that of maximal algebra of quotients given in [6].**

Let L be a simple Lie algebra. Then Q_m(L)≅Der(L) is an strongly prime Lie algebra and L is max-closed.

THE MAXIMAL ALGEBRA OF QUOTIENTS OF A 3-GRADED LIE ALGEBRA IS 3-GRADED TOO AND COINCIDES WITH ITS MAXIMAL GRADED ALGEBRA OF QUOTIENTS (See [5, Theorem 3.2])

 \circ

 $\varphi: L \rightarrow Q_{qr-m}(L)$ $x \mapsto (\text{ad } x)_L$

FIRST TARGET: **Analyze the relationship between notion of Jordan pairs of quotients in the sense of [2 ,2.5] and 3-graded Lie quotients, via the TKK-construction**

Theorem. Let V be a semiprime subpair of a Jordan pair W. Then the following conditions are equivalent:

Qm(V) = maximal pair *M*-quotients of V

(i) W is a pair of \mathfrak{M} -quotients of V.

Theorem. Assume that $\frac{1}{6} \in \Phi$. (i) Let V be a strongly nondegenerate Jordan pair. Then

 $Q_m(V) = \left(\left(Q_m(TKK(V))\right)_1, \left(Q_m(TKK(V))\right)_{-1}\right)$

is the maximal Jordan pair of \mathfrak{M} -quotients of V.

(ii) If $L = L_{-1} \oplus L_0 \oplus L_1$ is a strongly non-degenerate Jordan 3-graded Lie algebra satisfying that $Q_m(L)$ is Jordan 3-graded, then

 $Q_m(L) \cong Q_m(TKK(V)) \cong TKK(Q_m(V)),$

where $V = (L_1, L_{-1})$ is the associated Jordan pair of L.

This is an equivalence relation.

 $\mathrm{Der}_{\mathrm{m}}(A)$ = the set of all equivalence classes. One can prove that it is a Lie algebra.

CONSEQUENCES **Let A be a prime algebra such that either deg (A)**≠**3 or char (A)** ≠3

- If $A = Q_s(A)$, then $Q_m(A^-/Z) \cong \text{Der}(A)$. 1
- 2 If A is simple, then $Q_m(A^-/Z) \cong Q_m(\text{Der}(A)) \cong \text{Der}(A)$.
- 3 If A is affine and satisfies $Q_s(A) = AZ^{-1}$, then $Q_m(A^-/Z) \cong \text{Der}(Q_s(A))$.

The case of the Lie algebra **K/Z_K that arises from an associative algebra with involution * is analogous to the case of A- /Z. The only difference is that we have to deal only with derivations** δ preserving $*$ (in the sense $\delta(x^*) = \delta(x)^*$).

(i) $Der(A)$ is strongly prime.

(i) Every nonzero ideal of A contains a nonzero ideal of A invariant under every element of $Der(A)$.

Moreover, if these conditions hold, then

 $Q_m(A^-/Z) \cong Q_m(\text{Der}(A)).$

Corollary. Let A be a simple algebra. Then

 $Q_m(A^-/Z) \cong Q_m(\text{Der}(A)).$

Max-closed algebras

Give a description of the maximal algebra of quotients $Q_m(A^{-1}Z)$, where A is a prime associative algebra. To this end, we

5

WHEN IS TAKING THE MAXIMAL ALGEBRA OF QUOTIENTS A CLOSURE OPERATION?

Is $Q_m(Q_m(L))=Q_m(L)$ for every semiprime Lie algebra?

EXAMPLES **of** max-closed algebras

Let A **be a** prime **algebra such that either deg(A)**≠**3 or char(A)**≠**3. Then** A- /Z **is max-closed.**

R = ***- prime associative pair with involution** Q(R) = **associative Martindale pair of symmetric quotients Then** TKK(H(Q(R),*) is a 3-graded algebra of quotients of EXAMPLE 1

(ii) TKK(W) is an algebra of quotients of TKK(V). **[2, Theorem 2.10] INDEXT OBJECTIVE:** Analyze the **relationship between: - Maximal Jordan pairs of** *M***-quotients (See [2]) - Maximal 3-graded Lie quotients**

> **simple Lie algebra of countable dimension L is a Jordan 3-graded Lie algebra by doing** L_{-1} = eLf, L_1 = fLe and L_0 = { eXe + fXf : $X ∈ L$ }, where $e:=e_{11}$ and $f:= diag(0, 1, ...)$

> > **Let** A **be a** prime affine PI **algebra such that either deg(A)**≠**3 or char(A)**≠**3, and let** J **be a** noncentral Lie ideal **of A. Then the Lie algebra** J/(J∩Z) **is max-closed.**

EXAMPLE **of a** Lie algebra **which is** not max-closed

Let K be a field and set $A := K[t][x, y | xy = tyx]$. Then we have: A is a domain with center $Z = K[t]$. (i) $Q_s(A) = K(t)[x, y | xy = tyx].$ (ii) $Q_s(Q_s(A)) = K(t)[x^{-1}, x, y^{-1}, y | xy = tyx].$ (iii) Theorem. Let K be a field and $A = K[t][x, y | xy = tyx]$. Then: (i) $\text{Der}(Q_s(A)) \subsetneq Q_m(\text{Der}(Q_s(A))).$

(ii) The algebra $L = A^{-}/Z$ is not max-closed.

IS EVERY LIE ALGEBRA MAX-CLOSED?

This question makes sense since $Q_m(L)$ is semiprime (see [6, Proposition 2.7 (ii)]) REMARK.

> This A we shall deal with is the one that Passman used in [4] to show that Q_s(.) is not a closure operation.

Katarannas

Matej Brešar Departament of Mathematics. University of Maribor FNM, Koroška 160. 2000 Maribor. Slovenia. bresar@uni-mb.si

Francesc Perera Departament de Matemàtiques. Universitat Autònoma de Barcelona. 08193 Bellaterra, Barcelona. Spain. perera@mat.uab.cat

Mercedes Siles Molina Dpto. Algebra, Geometría y Topología. Facultad de Ciencias. Universidad de Málaga. 29071 Málaga. Spain. mercedes@agt.cie.uma.es

[1] K. I. BEIDAR, W. S. MARTINDALE III, A. V. MIKHALEV, *Rings with generalized identities***, Marcel Dekker, New York, 1996.**

[2] E. GARCÍA, M. GÓMEZ LOZANO, Jordan systems of Martindale-like quotients,*J. Pure Appl. Algebra* **194 (2004), 127-145.**

[3] C. MARTÍNEZ, The Ring of Franctions of a Jordan Algebra, *J. Algebra* **237 (2001), 798-812.**

[4] D. S. PASSMAN, Computing the symmetric ring of quotients, *J. Algebra* **105 (1987), 207-235.**

[5] J. S. O., M. SILES MOLINA, Algebras of quotients of graded Lie algebras (Preprint).

[6] M. SILES MOLINA, Algebras of quotients of Lie algebras, *J. Pure and Applied Algebra* **188 (2004), 175- 188.**

[7] Y. UTUMI, On quotients rings, *Osaka J. Math.* **8 (1956), 1-18.**

Jointly presented by

Summer School and Conference in Geometric Representation Theory and Extended Affine Lie Algebras

University of Ottawa, Ontario, Canada Summer School: June 15-27, 2009 Conference: June 29 - July 3, 2009

IT SATISFIES

introduce a new Lie algebra!

Two pairs $(\delta, I), (\mu, J)$ where I, J are essential ideals of A and $\delta : I \to A, \mu : J \to A$ are derivations are *equivalent* if $\delta = \mu$ on some essential ideal of A contained in $I \cap J$.

CONSTRUCTION

 These definitions are consistent with the non-graded ones (see [6, Definitions 2.1 and 2.5]) in the sense that they coincide when considering the trivial grading.

A useful tool will provide with examples of graded algebras of quotients (See EXAMPLE 1 and [5, Theorem 2.9 and Corollary 2.10])

GRADED QUOTIENTS

Inspired by Utumi's construction [7] and making use an idea of C. Martínez [3], M. Siles Molina built in [6] the maximal algebra of quotients for every semiprime Lie algebra. We follow here her construction.

It is a Φ**-module with the natural operations and hence**

 $\mathrm{Der}_{gr}(I, L) := \oplus_{\sigma \in G} \mathrm{Der}_{gr}(I, L)_{\sigma}$

Is Qm(I)=Qm(L) **for every** essential ideal I **of** L**?**

This question only makes sense if we assume that I **itself is a** semiprime Lie algebra**. Similar questions have been studied also in the associative context (see e.g. [1, Proposition 2.1.10])**

Theorem. Let I be an essential ideal of an strongly semiprime Lie algebra L. Then $Q_m(I) \cong Q_m(L)$.

Corollary. Let A be a semiprime algebra. Then:

 $Q_m([A, A]/Z_{[A, A]}) \cong Q_m(A^-/Z)$

Corollary. Let A be a prime algebra. If $Der(A)$ is strongly *prime then*

 \circ 1

 $Q_m(A^-/Z) \cong Q_m(\text{Der}(A)).$

 When is Der (A) STRONGLY PRIME

 $\overline{1}$ $\sqrt{2}$ conditions are equivalent:

 \circ

grading L_{1} = Fe₂₁, L₁ = Fe₁₂ and L₀ = F(e₁₁ - e₂₂)

The semisimplicity of L implies that $\big|Q_m(L) \cong L$

ad $e \notin [Der(L)]_1$, Der $(L)_1$]

(i) implies (ii) was proved in

 Is the CONDITION on L NECESSARY in the theorem above EXAMPLE 2 **algebra of infinite** $\mathbb{M}_{\infty}(\mathbb{R}) = \bigcup_{n=1}^{\infty} \mathbb{M}_n(\mathbb{R})$ **matrices with a a finite number of nonzero entries**

$L := \mathfrak{sl}_{\infty}(\mathbb{R}) = \{x \in \mathbb{M}_{\infty}(\mathbb{R}) \mid \text{tr}(x) = 0\}$

is 3-graded but it is NOT $Q_m(L) \cong \text{Der}(L)$ **JORDAN 3-GRADED**

 $\mathsf{since} \ \mathsf{ad} \ \mathsf{e} \in \mathsf{Der}(\mathsf{L})_0 \ \mathsf{and}$

EXAMPLE 3 **is a Jordan 3-graded** $L := \mathfrak{sl}_2(F) = \{x \in \mathbb{M}_2(F) \mid \text{tr}(x) = 0\}$ **Lie algebra with the**

> There are algebras satisfying this CONDITION