

These definitions are consistent with the non-graded ones (see [6, Definitions 2.1 and 2.5]) in the sense that they coincide when considering the trivial grading.

A useful tool will provide with examples of graded algebras of quotients (See EXAMPLE 1 and [5, Theorem 2.9 and Corollary 2.10])

GRADED QUOTIENTS

L = graded subalgebra of a graded Lie algebra Q

Q is a graded algebra of quotients of L

 $q_{\tau} \in Q, \ L(q_{\tau}) = \text{linear span in } Q \text{ of } q_{\tau} \text{ and } \text{ad } x_1 \dots \text{ad } x_n q_{\tau},$ with $n \in \mathbb{N}, x_1, \ldots, x_n \in L$ $\forall p_{\sigma}, q_{\tau} \in Q, p_{\sigma} \neq 0, \exists x_{\alpha} \in L : [x_{\alpha}, p_{\sigma}] \neq 0, [x_{\alpha}, L(q_{\tau})] \subseteq L$

Q is a graded weak algebra of quotients of L

$\forall \ 0 \neq p_{\sigma} \in Q_{\sigma}, \ \exists x_{\alpha} \in L : \ 0 \neq [x_{\alpha}, p_{\sigma}] \in L$

BEING A GRADED BEING A GRADED WEAK ALGEBRA OF QUOTIENTS ALGEBRA OF QUOTIENTS See [5, Remark 2.3]

As it happened in the non-graded case some **PROPERTIES** of a graded Lie algebra are INHERITED by each of its algebras of quotients (See [6, Lemma 2.11])

Dpto. Álgebra, Geometría y Topología. Facultad de Ciencias. Universidad de Málaga. 29071 Málaga. jsanchez@agt.cie.uma.es

Graded quotients

RELATIONSHIP BETWEEN GRADED (WEAK) ALGEBRAS OF QUOTIENTS AND (WEAK) ALGEBRAS OF QUOTIENTS

Proposition. Let $L \subseteq Q$ be graded Lie algebras. Consider the following *conditions:*

- (i) Q is an algebra of quotients of L.
- (ii) Q is a graded algebra of quotients of L.

Then (i) implies (ii). Moreover, if L is graded semiprime then (ii) implies (i).

Lemma. Let $L \subseteq Q$ be graded Lie algebras. If Q is a weak algebra of quotients of L then Q is also a graded weak algebra of quotients of L.

EXAMPLE 1 **R = *-** prime associative pair with involution **Q(R)** = associative Martindale pair of symmetric quotients Then TKK(H(Q(R),*) is a 3-graded algebra of quotients of

Inspired by Utumi's construction [7] and making use an idea of C. Martínez [3], M. Siles Molina built in [6] the maximal algebra of quotients for every semiprime Lie algebra. We follow here her construction.

MAXIMAL GRADED QUOTIENTS

Suppose L is G-graded and take I a graded ideal of L

A derivation $\delta: I \to L$ has degree $\sigma \in G$ if it satisfies $\delta(I_{\tau}) \subseteq L_{\tau\sigma}$ $(\forall \tau \in G)$. In this case, δ is called a graded derivation of degree σ .

 $|\mathrm{Der}_{qr}(I, L)_{\sigma}|$ = the set of all graded derivations of degree σ

It is a Φ -module with the natural operations and hence

 $\operatorname{Der}_{gr}(I, L) := \bigoplus_{\sigma \in G} \operatorname{Der}_{qr}(I, L)_{\sigma}$

is also a Φ -module.

 $|\mathcal{I}_{qr-e}(L)|$ = the set of all graded essential ideals of L

For L graded semiprime, the direct limit

 $Q_{gr-m}(L) := \lim \operatorname{Der}_{gr}(I, L)$ $I \in \mathcal{I}_{qr-e}(L)$

is a graded algebra of quotients of L containing L as a graded subalgebra via the following graded Lie monomorphism:

TKK(H(R,*)), where H(., *) is the set consisting of all symmetric elements.

THE MAXIMAL ALGEBRA OF QUOTIENTS OF A 3-GRADED LIE ALGEBRA IS 3-GRADED TOO AND **COINCIDES WITH ITS MAXIMAL GRADED ALGEBRA OF QUOTIENTS (See [5, Theorem 3.2])**

0

 $\varphi: L \rightarrow Q_{qr-m}(L)$ $x \mapsto (\operatorname{ad} x)_L$

Moreover, it is maximal among the graded algebras of quotients of L and is called the MAXIMAL GRADED **ALGEBRA OF QUOTIENTS OF L.** This notion extends that of maximal algebra of quotients given in [6].

Jorgan pairs of quotients and 3-graded Lie quotients 2

FIRST TARGET: Analyze the relationship between notion of Jordan pairs of quotients in the sense of [2, 2.5] and 3-graded Lie quotients, via the TKK-construction

Theorem. Let V be a semiprime subpair of a Jordan pair W. Then the following conditions are equivalent:

NEXT OBJECTIVE: Analyze the relationship between: Maximal Jordan pairs of *<i>W-quotients (See [2])* **Maximal 3-graded Lie quotients**

Q_m(V) = maximal pair *%*-quotients of V

(ii) TKK(W) is an algebra of quotients of TKK(V).

(i) W is a pair of \mathfrak{M} -quotients of V.

Theorem. Assume that $\frac{1}{6} \in \Phi$. (i) Let V be a strongly nondegenerate Jordan pair. Then

 $Q_m(V) = \left(\left(Q_m(\mathrm{TKK}(V)) \right)_1, \left(Q_m(\mathrm{TKK}(V)) \right)_{-1} \right)$

is the maximal Jordan pair of \mathfrak{M} -quotients of V.

(ii) If $L = L_{-1} \oplus L_0 \oplus L_1$ is a strongly non-degenerate Jordan 3-graded Lie algebra satisfying that $Q_m(L)$ is Jordan 3-graded, then

 $Q_m(L) \cong Q_m(\operatorname{TKK}(V)) \cong \operatorname{TKK}(Q_m(V)),$

where $V = (L_1, L_{-1})$ is the associated Jordan pair of L.

EXAMPLE 3 is a Jordan 3-graded $L := \mathfrak{sl}_2(F) = \{ x \in \mathbb{M}_2(F) \mid \operatorname{tr}(x) = 0 \}$ Lie algebra with the

Is the CONDITION on L NECESSARY in the theorem above **EXAMPLE 2** algebra of infinite $\mathbb{M}_{\infty}(\mathbb{R}) = \cup_{n=1}^{\infty} \mathbb{M}_{n}(\mathbb{R})$ matrices with a a finite number of nonzero entries

$L := \mathfrak{sl}_{\infty}(\mathbb{R}) = \{ x \in \mathbb{M}_{\infty}(\mathbb{R}) \mid \operatorname{tr}(x) = 0 \}$

simple Lie algebra of countable dimension L is a Jordan 3-graded Lie algebra by doing $L_1 = eLf$, $L_1 = fLe$ and $L_0 = \{ eXe + fXf :$ $X \in L$, where e:=e₁₁ and f:= diag(0, 1, ...)

is 3-graded but it is NOT $Q_m(L) \cong \operatorname{Der}(L)$ **JORDAN 3-GRADED**

since ad $e \in Der(L)_0$ and

(i) implies (ii) was proved in

[2, Theorem 2.10]

the maximal Lie algebra of quotients of an essential ideal

Is Q_m(I)=Q_m(L) for every essential ideal I of L?

This question only makes sense if we assume that I itself is a semiprime Lie algebra. Similar questions have been studied also in the associative context (see e.g. [1, Proposition 2.1.10])

Theorem. Let I be an essential ideal of an strongly semiprime Lie algebra L. Then $Q_m(I) \cong Q_m(L)$.

Corollary. Let A be a semiprime algebra. Then:

 $Q_m([A, A]/Z_{[A, A]}) \cong Q_m(A^-/Z)$

Corollary. Let A be a prime algebra. If Der(A) is strongly prime then

8

 $Q_m(A^-/Z) \cong Q_m(\operatorname{Der}(A)).$

When is Der (A) **STRONGLY PRIME**

Theorem. Let A be a prime algebra. Then the following conditions are equivalent: (i) Der(A) is strongly prime. (i) Every nonzero ideal of A contains a nonzero ideal of A invariant under every element of Der(A). Moreover, if these conditions hold, then

0

grading $L_{1} = Fe_{21}$, $L_{1} = Fe_{12}$ and $L_{0} = F(e_{11} - e_{22})$

The semisimplicity of L implies that $Q_m(L) \cong L$

ad e \notin [Der(L)₋₁, Der(L)₁]

There are algebras satisfying this CONDITION

The maximal Lie algebra of quotients of A^-/Z 4

Give a description of the maximal algebra of quotients Q_m(A⁻/Z), where A is a prime associative algebra.

To this end, we introduce a new Lie algebra!

Two pairs $(\delta, I), (\mu, J)$ where I, J are essential ideals of A and $\delta: I \to A, \mu: J \to A$ are derivations are *equivalent* if $\delta = \mu$ on some essential ideal of A contained in $I \cap J$.

CONSTRUCTION

This is an equivalence relation.

IT SATISFIES

If A is prime, then:

 $\operatorname{Der}(A) \subseteq \operatorname{Der}_{\mathrm{m}}(A) \subseteq \operatorname{Der}(Q_s(A))$

Theorem. Let A be a prime algebra such that either $deg(A) \neq 3$ or $char(A) \neq 3$. Then, $Der(A) \cong Q_m(A^-/Z)$. Moreover, the map $\varphi : Der_m(A) \to Q_m(A^-/Z)$ defined by $\delta_I \mapsto \delta_{\overline{I}}$, where $\overline{\delta}: \overline{I} \to A^-/Z$ maps \overline{y} into $\overline{\delta(y)}$, is an isomorphism of Lie algebras.

CONSEQUENCES Let A be a prime algebra such that either deg (A) \neq 3 or char (A) \neq 3

- If $A = Q_s(A)$, then $Q_m(A^-/Z) \cong \text{Der}(A)$ (1)
- 2 If A is simple, then $Q_m(A^-/Z) \cong Q_m(\text{Der}(A)) \cong \text{Der}(A)$.
- 3 If A is affine and satisfies $Q_s(A) = AZ^{-1}$, then $Q_m(A^-/Z) \cong \text{Der}(Q_s(A))$.

The case of the Lie algebra K/Z_K that arises from an associative algebra with involution is analogous to the case of A-/Z. The only difference is that we have to deal only with derivations δ preserving * (in the sense $\delta(\mathbf{x}^*) = \delta(\mathbf{x})^*$).

 $Q_m(A^-/Z) \cong Q_m(\operatorname{Der}(A)).$

Corollary. Let A be a simple algebra. Then

 $Q_m(A^-/Z) \cong Q_m(\operatorname{Der}(A)).$

Max-closed algebras 5

REMARK. This question makes sense since Q_m(L) is semiprime (see [6, Proposition 2.7 (ii)])

WHEN IS TAKING THE MAXIMAL ALGEBRA OF **QUOTIENTS A CLOSURE OPERATION?**

Is $Q_m(Q_m(L)) = Q_m(L)$ for every semiprime Lie algebra?

Let L be a SEMIPRIME Lie algebra. We say that L is **MAX-CLOSED** if it satisfies $Q_m(Q_m(L)) = Q_m(L)$

EXAMPLES of max-closed algebras

Let **L** be a simple Lie algebra. Then $Q_m(L) \cong Der(L)$ is an strongly prime Lie algebra and L is max-closed.

Let **A** be a prime algebra such that either $deg(A) \neq 3$ or $char(A) \neq 3$. Then A-/Z is max-closed.

Let A be a prime affine PI algebra such that either deg(A) \neq 3 or char(A) \neq 3, and let J be a noncentral Lie ideal of A. Then the Lie algebra $J/(J \cap Z)$ is max-closed.

IS EVERY LIE ALGEBRA MAX-CLOSED?

This A we shall deal with is the one

Kotoroncoc

[1] K. I. BEIDAR, W. S. MARTINDALE III, A. V. MIKHALEV, *Rings with generalized identities*, Marcel Dekker, New York, 1996.

[2] E. GARCÍA, M. GÓMEZ LOZANO, Jordan systems of Martindale-like quotients, J. Pure Appl. Algebra 194 (2004), 127-145.

[3] C. MARTÍNEZ, The Ring of Franctions of a Jordan Algebra, J. Algebra 237 (2001), 798-812.

[4] D. S. PASSMAN, Computing the symmetric ring of quotients, J. Algebra 105 (1987), 207-235.

[5] J. S. O., M. SILES MOLINA, Algebras of quotients of graded Lie algebras (Preprint).

[6] M. SILES MOLINA, Algebras of quotients of Lie algebras, J. Pure and Applied Algebra 188 (2004), 175-188.

[7] Y. UTUMI, On quotients rings, Osaka J. Math. 8 (1956), 1-18.

Jointly presented by

Matej Brešar **Departament of Mathematics. University of Maribor** FNM, Koroška 160. 2000 Maribor. Slovenia. bresar@uni-mb.si

Francesc Perera Departament de Matemàtiques. Universitat Autònoma de Barcelona. 08193 Bellaterra, Barcelona. Spain. perera@mat.uab.cat

Mercedes Siles Molina Dpto. Algebra, Geometría y Topología Facultad de Ciencias. Universidad de Málaga. 29071 Málaga. Spain. mercedes@agt.cie.uma.es

that Passman used in [4] to show that **Q**_c(.) is not a closure operation.

EXAMPLE of a Lie algebra which is not max-closed

Let K be a field and set A := K[t][x, y | xy = tyx]. Then we have: A is a domain with center Z = K[t]. (i) $Q_s(A) = K(t)[x, y \mid xy = tyx].$ (ii) (iii) $Q_s(Q_s(A)) = K(t)[x^{-1}, x, y^{-1}, y \mid xy = tyx].$ Theorem. Let K be a field and A = K[t][x, y | xy = tyx]. Then: (i) $\operatorname{Der}(Q_s(A)) \subsetneq Q_m(\operatorname{Der}(Q_s(A))).$

(ii) The algebra $L = A^{-}/Z$ is not max-closed.

Summer School and Conference in Geometric Representation Theory and Extended Affine Lie Algebras

University of Ottawa, Ontario, Canada Summer School: June 15-27, 2009 Conference: June 29 - July 3, 2009

