An Application to Associative Algebras

We first introduce some additional notation:

$$
\bullet \: \mathbb{V} := \bigoplus_{\mu \in P^+} V(\mu), \quad \mathbb{V}^{\circledast} := \bigoplus_{\mu \in P^+} V(\mu)^*.
$$

• $A := A \otimes \mathbb{V}^* \otimes \mathbb{V}$, where A is an associative C-algebra with unity 1_A .

• If A is \mathbb{Z}^+ -graded, then $\mathbb{A}[k] := A[k] \otimes \mathbb{V}^* \otimes \mathbb{V}$ gives a \mathbb{Z}^+ -grading on A.

• If $J \subset I$, $\rho_{S_J} \in P^+$. Furthermore, $S_J = S(\rho_{S_J}) \ \forall \ J \subset I$, and, thus, S_J is rigid if and only if $J \cap I_{\lambda} \neq I_{\lambda}$.

> • Expanding the results of Theorem 1 to the case when λ is not regular. Working jointly with Apoorva Khare to consider the case when g is reductive.

Current Research

 $\alpha_n = \epsilon_{n-1} + \epsilon_n$. This gives $R^+ = {\epsilon_i - \epsilon_j \mid 1 \leq i < j \leq n} \cup {\epsilon_i + \epsilon_j \mid 1 \leq i < j \leq n}.$ Then, $\Psi \subset R$ is rigid if and only if one of the following holds:

1. $\Psi = \{\epsilon_i - \epsilon_j \mid i \in \mathbf{i}, j \in \mathbf{j}\} \cup \{\epsilon_{i_1} + \epsilon_{i_2} \mid i_1, i_2 \in \mathbf{i}, i_1 \neq i_2\} \cup \{-(\epsilon_{j_1} + \epsilon_{j_2} \mid j_1, j_2 \in \mathbf{j}, j_1 \neq j_2\}$ for some subsets $\mathbf{i}, \mathbf{j} \subset [n]$ such that $\mathbf{i} \cap \mathbf{j} = \emptyset$ $2. \pm \Psi = \{ \epsilon_i \pm \epsilon_j \mid j \in [n], i \neq j \}.$

Rigid subsets of the adjoint representation

- Let g be a finite-dimensional simple Lie algebra of finite type. Let $V = V(\theta) = \mathfrak{g}_{ad}$ be the adjoint representation of g. In this case, $wt(V) = R \cup \{0\}$. The (2-)rigid subsets of $wt(V)$ are as follows:
- Let g be of type A_n . We can write the simple roots as $\alpha_i = \epsilon_i \epsilon_{i+1}$ for $i \in [n]$, so $R = \{\epsilon_i - \epsilon_j \mid i \neq j\}$. Then, $\Psi \subset R$ is rigid if and only if $\Psi = \{\epsilon_i - \epsilon_j \mid i \in \mathbf{i}, j \in \mathbf{j}\}\)$ for some subsets $\mathbf{i}, \mathbf{j} \subset [n+1]$ such that $\mathbf{i} \cap \mathbf{j} = \emptyset$.
- Let g be of type C_n . We can write the simple roots as $\alpha_i = \epsilon_i \epsilon_{i+1}$ for $i \in [n-1]$ and $\alpha_n = 2\epsilon_n$. This gives $R^+ = \{\epsilon_i - \epsilon_j \mid 1 \leq i < j \leq n\} \cup \{\epsilon_i + \epsilon_j \mid 1 \leq i \leq j \leq n\}.$ Then, $\Psi \subset R$ is rigid if and only if $\Psi = \{\epsilon_i - \epsilon_j \mid i \in \mathbf{i}, j \in \mathbf{j}\} \cup \{\epsilon_{i_1} + \epsilon_{i_2} \mid i_1, i_2 \in \mathbf{j}\}$ $\mathbf{i} \} \cup \{-(\epsilon_{j_1}+\epsilon_{j_2} \mid j_1, j_2 \in \mathbf{j}\}\)$ for some subsets $\mathbf{i}, \mathbf{j} \subset [n]$ such that $\mathbf{i} \cap \mathbf{j} = \emptyset$.
- Let g be of type B_n . We can write the simple roots as $\alpha_i = \epsilon_i \epsilon_{i+1}$ for $i \in [n-1]$ and $\alpha_n = \epsilon_n$. This gives $R^+ = \{\epsilon_i - \epsilon_j \mid 1 \leq i < j \leq n\} \cup \{\epsilon_i + \epsilon_j \mid 1 \leq i < j \leq n\} \cup \{\epsilon_i \mid i \in [n]\}.$ Then, $\Psi \subset R$ is rigid if and only if one of the following holds:
- 1. $\Psi = \{\epsilon_i \epsilon_j \mid i \in \mathbf{i}, j \in \mathbf{j}\} \cup \{\epsilon_{i_1} + \epsilon_{i_2} \mid i_1, i_2 \in \mathbf{i}, i_1 \neq i_2\} \cup \{-(\epsilon_{j_1} + \epsilon_{j_2} \mid j_1, j_2 \in \mathbf{j}, j_1 \neq j_2\}$ for some subsets $\mathbf{i}, \mathbf{j} \subset [n]$ such that $\mathbf{i} \cap \mathbf{j} = \emptyset$ $2. \pm \Psi = \{\epsilon_i\} \cup \{\epsilon_i \pm \epsilon_j \mid j \in [n], i \neq j\}.$
- Let g be of type D_n . We can write the simple roots as $\alpha_i = \epsilon_i \epsilon_{i+1}$ for $i \in [n-1]$ and

• For $\mu \in P^+$, 1_μ is the canonical g-invariant element in $V(\mu)^* \otimes V(\mu)$. Set $1_\mu := 1_A \otimes 1_\mu$.

- Given $\lambda \in P^+$ and $\Psi \subset wt(\lambda)$, say $\mu \preceq_{\Psi} \nu$ iff $\nu \mu \in \mathbb{Z}_+ \Psi$ and $d_{\Psi}(\mu,\nu)=min\{\sum_{\beta\in\Psi}m_{\beta}\mid \nu-\mu=\sum_{\beta\in\Psi}m_{\beta}\beta,\ m_{\beta}\in\mathbb{Z}_+\ \forall \beta\}.$
- For $\mu, \nu \in P^+$, define the following sets: $\preceq_{\Psi} \mu = \{\eta \in P^+ | \eta \preceq_{\Psi} \mu\}$, $\mu \preceq_{\Psi} = \{\xi \in$ $P^+ \mid \mu \preceq_{\Psi} \xi$, and $[\mu, \nu]_{\Psi} = (\preceq_{\Psi} \mu) \cap (\preceq_{\Psi} \nu)$.
- If A is \mathbb{Z}^+ -graded, $\mathbb{A}_{\Psi}(\mu,\nu) := 1_{\mu} \mathbb{A}[d_{\Psi}(\mu,\nu)] 1_{\nu}$ where $\mu \preceq_{\Psi} \nu \in P^+$. For $F \subset P^+$, $\mathbb{A}_{\Psi}(F) :=$ \bigoplus $\mu,\nu{\in}F:\mu{\preceq_\Psi}\nu$ $\mathbb{A}_{\Psi}(\mu,\nu).$
- If A is also a g-module with $g(A[k]) \subset A[k] \forall k$, $\mathbb{A}_{\text{U}}^{\mathfrak{g}}$ $\frac{\mathfrak{g}}{\Psi}(\mu,\nu) := (\mathbb{A}_{\Psi}(\mu,\nu))^{\mathfrak{g}}$ and $\mathbb{A}_{\Psi}^{\mathfrak{g}}$ Ψ $(F) :=$ $(\mathbb{A}_\Psi(F))^{\mathfrak{g}}.$

Theorem 2. *Suppose* $\Psi \subset wt(V(\lambda))$ *is rigid. Let* $A = S(V(\lambda))$ *, the symmetric algebra on* $V(\lambda)$. Let $\mathbb{S} := A \otimes \mathbb{V}^{\circledast} \otimes \mathbb{V}$. Given $\mu, \nu \in P^+$, the algebras $\mathbb{S}_{\mathbb{U}}^{\mathfrak{g}}$ $\frac{\mathfrak{g}}{\Psi}(\preceq_\Psi \nu)$, $\mathbb{S}_\Psi^{\mathfrak{g}}$ $\frac{\mathfrak{g}}{\Psi}(\mu \preceq_{\Psi})$, and S g $\frac{\mathfrak{g}}{\Psi}([\mu,\nu]_\Psi)$ are Koszul with global dimension at most $N_\Psi := \sum_{\xi \in \Psi} dim(V(\lambda)_\xi)$. Moreover, *the global dimension is exactly* N_{Ψ} *for some choice of* $\mu \preceq_{\Psi} \nu \in P^{+}$ *.*

- Conjecture If $\lambda \in P^+$ and $\Psi \subsetneq wt(\lambda)$ is (2-)rigid, then $\Psi = w(S_J)$ for some $w \in W$ and $J\subsetneq I_{\lambda}$.
- In *Ideals in parabolic subalgebras of simple Lie algebras*, Chari, Dolbin and Ridenour show that the conjecture is true for the case when $\lambda = \theta$ where θ is the highest weight in the adjoint representation of a finite dimensional simple Lie algebra g.

• The conjecture has also been verified for all simple Lie algebras of rank 2.

Main Result

Theorem 1. Suppose that $\lambda \in P^+$ is quasi-regular. Then, the following are equivalent for a set $\Psi \subset wt(\lambda)$:

- *1.* $\Psi = w(S_J)$ *for some* $w \in W$ *and* $J \subset I$ *with* $J \cap I_\lambda \neq I_\lambda$ *;*
- *2.* $\Psi = S(\rho_{\Psi})$ *with* $\rho_{\Psi} \neq 0$ *;*
- *3.* $\Psi = S(\nu)$ *for some* $0 \neq \nu \in P$ *with* $(\nu, \mu) \neq 0$ *for some* $\mu \in wt(\lambda)$ *;*
- *4.* Ψ *is rigid.*
- *5.* Ψ *is a 2-rigid set with* $\Psi \neq wt(\lambda)$ *.*

Preliminary Notation, Definitions, and Results

- For a finite dimensional semisimple Lie algebra g of rank n with fixed Cartan subalgebra \mathfrak{h} , we denote the set of roots (resp. the root lattice, the weight lattice) of $\mathfrak g$ by R (resp. Q, P).
- Let I be an indexing set for the simple roots of g.
- The set of g-invariant elements of a g-module V is denoted by $V^{\mathfrak{g}}$.
- Let $wt(V)$ denote the set of weights for the g-module V.
- If $V = V(\lambda)$ is the unique finite-dimensional irreducible highest weight g-module with highest weight λ , set $wt(\lambda) = wt(V)$.
- For any finite subset $S \subset \mathfrak{h}^*$, set $\rho_S := \sum \mu$.

$$
\sum_{\mu \in S}
$$

• Let $0 \neq \lambda = \sum m_i \omega_i \in P^+$ with $K \subset I$ and $m_i > 0$ for all $i \in K$. Let $I_1, ..., I_r$ be the i∈K (indexing sets for) connected components of the Dynkin diagram such that $K \cap I_j \neq \emptyset \; \forall \; j.$ Define $I_\lambda \mathrel{\mathop:}= \coprod$ r $j=1$ I_j .

• An element $\lambda \in P^+$ is quasi-regular if $K = I_{\lambda}$. If $K = I_{\lambda} = I$, then λ is regular.

• $S_J := \{ \mu = \lambda - \sum_{j \in J} r_j \alpha_j | r_j \in \mathbb{Z}^+ \} \cap wt(\lambda)$ for $J \subset I$.

• $S(\xi) := {\mu \in wt(\lambda) \mid (\xi, \mu) \geq (\xi, \nu) \forall \nu \in wt(\lambda)}$ for $0 \neq \xi \in P$.

• A subset $\Psi \subset wt(V)$ is said to be rigid if given $\eta \in \mathbb{Z}^+\Psi$ and $\eta = \sum m_\mu \mu$ with $\mu \in wt(\lambda)$ $m_{\mu} \in \mathbb{Z}^+$, then $\sum m_{\mu}$ is the least possible if and only if $m_{\mu} = 0 \forall \mu \notin \Psi$. $\mu \in wt(\lambda)$

• Similarly, $\Psi \subset wt(V)$ is 2-rigid if $\gamma+wt(\lambda) \cap (\Psi+\Psi) = \emptyset = (\Psi+\Psi) \cap wt(\lambda) \ \forall \ \gamma \in wt(\lambda) \setminus \Psi$.

- If a subset $\Psi \subset wt(\lambda)$ contains a non-empty W-invariant subset T, then Ψ is not rigid. In particular, $wt(\lambda)$ is not rigid.
- If $\Psi \subset wt(\lambda)$ is rigid, then $w(\Psi)$ is rigid for all $w \in \mathcal{W}$.

• If $\Psi \subset wt(\lambda)$ is a non-empty rigid set, then $w(\lambda) \in \Psi$ for some $w \in \mathcal{W}$. In particular, if $|\Psi| = 1$, then $w(\Psi) = {\lambda}$ for some $w \in \mathcal{W}$.

• For all $0 \neq \lambda \in P^+$ and $0 \neq \xi \in P$, the set $S(\xi) \subset wt(\lambda)$ is (2-)rigid.

• The implications $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5$ in the theorem are all true for any nonzero $\lambda \in P^+$.

UC Riverside Department of Mathematics A Chari's Angels Production Contact Information: tbr4@math.ucr.edu

Rigid subsets of weights for semisimple Lie algebras

Tim Ridenour **Advisor: Dr. Vyjayanthi Chari**