Rigid subsets of weights for semisimple Lie algebras

Tim Ridenour

Advisor: Dr. Vyjayanthi Chari

Preliminary Notation, Definitions, and Results

- For a finite dimensional semisimple Lie algebra \mathfrak{g} of rank n with fixed Cartan subalgebra \mathfrak{h} , we denote the set of roots (resp. the root lattice, the weight lattice) of \mathfrak{g} by R (resp. Q, P).
- Let *I* be an indexing set for the simple roots of g.
- The set of \mathfrak{g} -invariant elements of a \mathfrak{g} -module V is denoted by $V^{\mathfrak{g}}$.
- Let wt(V) denote the set of weights for the g-module V.
- If $V = V(\lambda)$ is the unique finite-dimensional irreducible highest weight \mathfrak{g} -module with highest weight λ , set $wt(\lambda) = wt(V)$.

• For any finite subset $S \subset \mathfrak{h}^*$, set $\rho_S := \sum \mu$.

Main Result

- **Theorem 1.** Suppose that $\lambda \in P^+$ is quasi-regular. Then, the following are equivalent for a set $\Psi \subset wt(\lambda)$:
- 1. $\Psi = w(S_J)$ for some $w \in W$ and $J \subset I$ with $J \cap I_{\lambda} \neq I_{\lambda}$;
- 2. $\Psi = S(\rho_{\Psi})$ with $\rho_{\Psi} \neq 0$;
- 3. $\Psi = S(\nu)$ for some $0 \neq \nu \in P$ with $(\nu, \mu) \neq 0$ for some $\mu \in wt(\lambda)$;
- 4. Ψ is rigid.
- 5. Ψ is a 2-rigid set with $\Psi \neq wt(\lambda)$.

$$\begin{array}{c} \mu \in S \end{array}$$

• Let $0 \neq \lambda = \sum_{i \in K} m_i \omega_i \in P^+$ with $K \subset I$ and $m_i > 0$ for all $i \in K$. Let $I_1, ..., I_r$ be the (indexing sets for) connected components of the Dynkin diagram such that $K \cap I_j \neq \emptyset \forall j$. Define $I_{\lambda} := \prod_{j=1}^r I_j$.

• An element $\lambda \in P^+$ is quasi-regular if $K = I_{\lambda}$. If $K = I_{\lambda} = I$, then λ is regular.

• $S_J := \{\mu = \lambda - \sum_{j \in J} r_j \alpha_j | r_j \in \mathbb{Z}^+\} \cap wt(\lambda) \text{ for } J \subset I.$

• $S(\xi) := \{ \mu \in wt(\lambda) \mid (\xi, \mu) \ge (\xi, \nu) \forall \nu \in wt(\lambda) \} \text{ for } 0 \neq \xi \in P.$

• A subset $\Psi \subset wt(V)$ is said to be rigid if given $\eta \in \mathbb{Z}^+ \Psi$ and $\eta = \sum_{\mu \in wt(\lambda)} m_{\mu}\mu$ with $m_{\mu} \in \mathbb{Z}^+$, then $\sum_{\mu \in wt(\lambda)} m_{\mu}$ is the least possible if and only if $m_{\mu} = 0 \forall \mu \notin \Psi$.

• Similarly, $\Psi \subset wt(V)$ is 2-rigid if $\gamma + wt(\lambda) \cap (\Psi + \Psi) = \emptyset = (\Psi + \Psi) \cap wt(\lambda) \ \forall \ \gamma \in wt(\lambda) \setminus \Psi$.

If a subset Ψ ⊂ wt(λ) contains a non-empty W-invariant subset T, then Ψ is not rigid. In particular, wt(λ) is not rigid.

• If $\Psi \subset wt(\lambda)$ is rigid, then $w(\Psi)$ is rigid for all $w \in \mathcal{W}$.

• If $\Psi \subset wt(\lambda)$ is a non-empty rigid set, then $w(\lambda) \in \Psi$ for some $w \in W$. In particular, if $|\Psi| = 1$, then $w(\Psi) = \{\lambda\}$ for some $w \in W$.

• For all $0 \neq \lambda \in P^+$ and $0 \neq \xi \in P$, the set $S(\xi) \subset wt(\lambda)$ is (2-)rigid.

• If $J \subset I$, $\rho_{S_J} \in P^+$. Furthermore, $S_J = S(\rho_{S_J}) \forall J \subset I$, and, thus, S_J is rigid if and only

• The implications $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5$ in the theorem are all true for any nonzero $\lambda \in P^+$.

- Conjecture If $\lambda \in P^+$ and $\Psi \subsetneq wt(\lambda)$ is (2-)rigid, then $\Psi = w(S_J)$ for some $w \in W$ and $J \subsetneq I_{\lambda}$.
- In *Ideals in parabolic subalgebras of simple Lie algebras*, Chari, Dolbin and Ridenour show that the conjecture is true for the case when $\lambda = \theta$ where θ is the highest weight in the adjoint representation of a finite dimensional simple Lie algebra g.

• The conjecture has also been verified for all simple Lie algebras of rank 2.

An Application to Associative Algebras

We first introduce some additional notation:

$$\bullet \mathbb{V} := \bigoplus_{\mu \in P^+} V(\mu), \quad \mathbb{V}^{\circledast} := \bigoplus_{\mu \in P^+} V(\mu)^*.$$

• $\mathbb{A} := A \otimes \mathbb{V}^{\circledast} \otimes \mathbb{V}$, where A is an associative \mathbb{C} -algebra with unity 1_A .

• If A is \mathbb{Z}^+ -graded, then $\mathbb{A}[k] := A[k] \otimes \mathbb{V}^{\circledast} \otimes \mathbb{V}$ gives a \mathbb{Z}^+ -grading on \mathbb{A} .

if $J \cap I_{\lambda} \neq I_{\lambda}$.

Rigid subsets of the adjoint representation

- Let \mathfrak{g} be a finite-dimensional simple Lie algebra of finite type. Let $V = V(\theta) = \mathfrak{g}_{ad}$ be the adjoint representation of \mathfrak{g} . In this case, $wt(V) = R \cup \{0\}$. The (2-)rigid subsets of wt(V) are as follows:
- Let \mathfrak{g} be of type A_n . We can write the simple roots as $\alpha_i = \epsilon_i \epsilon_{i+1}$ for $i \in [n]$, so $R = \{\epsilon_i \epsilon_j \mid i \neq j\}$. Then, $\Psi \subset R$ is rigid if and only if $\Psi = \{\epsilon_i \epsilon_j \mid i \in \mathbf{i}, j \in \mathbf{j}\}$ for some subsets $\mathbf{i}, \mathbf{j} \subset [n+1]$ such that $\mathbf{i} \cap \mathbf{j} = \emptyset$.
- Let \mathfrak{g} be of type C_n . We can write the simple roots as $\alpha_i = \epsilon_i \epsilon_{i+1}$ for $i \in [n-1]$ and $\alpha_n = 2\epsilon_n$. This gives $R^+ = \{\epsilon_i \epsilon_j \mid 1 \leq i < j \leq n\} \cup \{\epsilon_i + \epsilon_j \mid 1 \leq i \leq j \leq n\}$. Then, $\Psi \subset R$ is rigid if and only if $\Psi = \{\epsilon_i - \epsilon_j \mid i \in \mathbf{i}, j \in \mathbf{j}\} \cup \{\epsilon_{i_1} + \epsilon_{i_2} \mid i_1, i_2 \in \mathbf{i}\} \cup \{-(\epsilon_{j_1} + \epsilon_{j_2} \mid j_1, j_2 \in \mathbf{j}\}$ for some subsets $\mathbf{i}, \mathbf{j} \subset [n]$ such that $\mathbf{i} \cap \mathbf{j} = \emptyset$.
- Let \mathfrak{g} be of type B_n . We can write the simple roots as $\alpha_i = \epsilon_i \epsilon_{i+1}$ for $i \in [n-1]$ and $\alpha_n = \epsilon_n$. This gives $R^+ = \{\epsilon_i \epsilon_j \mid 1 \le i < j \le n\} \cup \{\epsilon_i + \epsilon_j \mid 1 \le i < j \le n\} \cup \{\epsilon_i \mid i \in [n]\}$. Then, $\Psi \subset R$ is rigid if and only if one of the following holds:
- 1. $\Psi = \{\epsilon_i \epsilon_j \mid i \in \mathbf{i}, j \in \mathbf{j}\} \cup \{\epsilon_{i_1} + \epsilon_{i_2} \mid i_1, i_2 \in \mathbf{i}, i_1 \neq i_2\} \cup \{-(\epsilon_{j_1} + \epsilon_{j_2} \mid j_1, j_2 \in \mathbf{j}, j_1 \neq j_2\}$ for some subsets $\mathbf{i}, \mathbf{j} \subset [n]$ such that $\mathbf{i} \cap \mathbf{j} = \emptyset$ 2. $\pm \Psi = \{\epsilon_i\} \cup \{\epsilon_i \pm \epsilon_j \mid j \in [n], i \neq j\}.$
- Let \mathfrak{g} be of type D_n . We can write the simple roots as $\alpha_i = \epsilon_i \epsilon_{i+1}$ for $i \in [n-1]$ and

• For $\mu \in P^+$, 1_{μ} is the canonical g-invariant element in $V(\mu)^* \otimes V(\mu)$. Set $\mathbf{1}_{\mu} := 1_A \otimes 1_{\mu}$.

- Given $\lambda \in P^+$ and $\Psi \subset wt(\lambda)$, say $\mu \preceq_{\Psi} \nu$ iff $\nu \mu \in \mathbb{Z}_+ \Psi$ and $d_{\Psi}(\mu, \nu) = min\{\sum_{\beta \in \Psi} m_{\beta} \mid \nu \mu = \sum_{\beta \in \Psi} m_{\beta}\beta, \ m_{\beta} \in \mathbb{Z}_+ \forall \beta\}.$
- For $\mu, \nu \in P^+$, define the following sets: $\leq_{\Psi} \mu = \{\eta \in P^+ \mid \eta \leq_{\Psi} \mu\}, \mu \leq_{\Psi} = \{\xi \in P^+ \mid \mu \leq_{\Psi} \xi\}, \text{ and } [\mu, \nu]_{\Psi} = (\leq_{\Psi} \mu) \cap (\leq_{\Psi} \nu).$
- If A is \mathbb{Z}^+ -graded, $\mathbb{A}_{\Psi}(\mu, \nu) := 1_{\mu} \mathbb{A}[d_{\Psi}(\mu, \nu)] 1_{\nu}$ where $\mu \preceq_{\Psi} \nu \in P^+$. For $F \subset P^+$, $\mathbb{A}_{\Psi}(F) := \bigoplus_{\mu,\nu \in F: \mu \preceq_{\Psi} \nu} \mathbb{A}_{\Psi}(\mu, \nu).$
- If A is also a g-module with $\mathfrak{g}(A[k]) \subset A[k] \ \forall k, \mathbb{A}^{\mathfrak{g}}_{\Psi}(\mu, \nu) := (\mathbb{A}_{\Psi}(\mu, \nu))^{\mathfrak{g}}$ and $\mathbb{A}^{\mathfrak{g}}_{\Psi}(F) := (\mathbb{A}_{\Psi}(F))^{\mathfrak{g}}$.

Theorem 2. Suppose $\Psi \subset wt(V(\lambda))$ is rigid. Let $A = S(V(\lambda))$, the symmetric algebra on $V(\lambda)$. Let $\mathbb{S} := A \otimes \mathbb{V}^{\circledast} \otimes \mathbb{V}$. Given $\mu, \nu \in P^+$, the algebras $\mathbb{S}_{\Psi}^{\mathfrak{g}}(\preceq_{\Psi} \nu)$, $\mathbb{S}_{\Psi}^{\mathfrak{g}}(\mu \preceq_{\Psi})$, and $\mathbb{S}_{\Psi}^{\mathfrak{g}}([\mu, \nu]_{\Psi})$ are Koszul with global dimension at most $N_{\Psi} := \sum_{\xi \in \Psi} dim(V(\lambda)_{\xi})$. Moreover, the global dimension is exactly N_{Ψ} for some choice of $\mu \preceq_{\Psi} \nu \in P^+$.

Current Research

 $\alpha_n = \epsilon_{n-1} + \epsilon_n$. This gives $R^+ = \{\epsilon_i - \epsilon_j \mid 1 \le i < j \le n\} \cup \{\epsilon_i + \epsilon_j \mid 1 \le i < j \le n\}$. Then, $\Psi \subset R$ is rigid if and only if one of the following holds:

1. $\Psi = \{\epsilon_i - \epsilon_j \mid i \in \mathbf{i}, j \in \mathbf{j}\} \cup \{\epsilon_{i_1} + \epsilon_{i_2} \mid i_1, i_2 \in \mathbf{i}, i_1 \neq i_2\} \cup \{-(\epsilon_{j_1} + \epsilon_{j_2} \mid j_1, j_2 \in \mathbf{j}, j_1 \neq j_2\}$ for some subsets $\mathbf{i}, \mathbf{j} \subset [n]$ such that $\mathbf{i} \cap \mathbf{j} = \emptyset$ 2. $\pm \Psi = \{\epsilon_i \pm \epsilon_j \mid j \in [n], i \neq j\}.$ • Expanding the results of Theorem 1 to the case when λ is not regular. Working jointly with Apoorva Khare to consider the case when g is reductive.

UC Riverside Department of Mathematics A Chari's Angels Production Contact Information: tbr4@math.ucr.edu